
Deep Hashing for Speaker Identification and Retrieval

Lei Fan, Qing-Yuan Jiang, Ya-Qi Yu and Wu-Jun Li

National Key Laboratory for Novel Software Technology
Collaborative Innovation Center of Novel Software Technology and Industrialization
Department of Computer Science and Technology, Nanjing University, P. R. China

{fanl,jiangqy,yuyq}@lamda.nju.edu.cn, liwujun@nju.edu.cn

Abstract
Speaker identification and retrieval have been widely used
in real applications. To overcome the inefficiency problem
caused by real-valued representations, there have appeared
some speaker hashing methods for speaker identification and
retrieval by learning binary codes as representations. How-
ever, these hashing methods are based on i-vector and can-
not achieve satisfactory retrieval accuracy as they cannot learn
discriminative feature representations. In this paper, we pro-
pose a novel deep hashing method, called deep additive margin
hashing (DAMH), to improve retrieval performance for speaker
identification and retrieval task. Compared with existing
speaker hashing methods, DAMH can perform feature learn-
ing and binary code learning seamlessly by incorporating these
two procedures into an end-to-end architecture. Experimen-
tal results on a large-scale audio dataset VoxCeleb2 show that
DAMH can outperform existing speaker hashing methods to
achieve state-of-the-art performance.
Index Terms: speaker identification and retrieval, deep hash-
ing, additive margin softmax, deep additive margin hashing

1. Introduction
Speaker identification and retrieval [1, 2, 3] have been widely
used in real applications including automatic access control of
banking services, financial transactions and detection of speak-
ers in complex scenes. Both speaker identification and retrieval
can be realized by a retrieval procedure1. To realize the re-
trieval procedure, one common solution is to embed utterances
into low-dimensional representations firstly, which is also called
speaker embedding, and then perform retrieval based on the
low-dimensional representations.

Over the past decades, real-value based speaker embed-
ding has made good progress and achieved promising accu-
racy [2, 4, 5, 6]. I-vector based approaches [4], which project
the Gaussian mixture model (GMM) super vector into a low-
dimensional vector, have dominated the field of speaker em-
bedding. I-vector based systems are robust and accurate in the
cases with utterances of sufficient length [4]. Nevertheless, long
speech isn’t always available in real applications. With the up-
surge of deep learning, many works have recently been devoted
to deep neural networks (DNN) [2, 5, 6] and achieved promising
performance due to the powerful modeling capacity of DNN.
DNN based systems can outperform i-vector based systems in
the case of short utterances, which is more common and practi-
cal than long utterances in real applications. Since i-vector and
DNN based methods are real-value based methods, they usu-

1In some cases, speaker identification can also be realized by classi-
fication. In this paper, we only focus on retrieval based speaker identi-
fication.

ally suffer from high storage cost and low retrieval speed in real
applications with large-scale datasets.

To enable fast query and reduce storage cost, there have ap-
peared some hashing methods [1, 3], also called speaker hash-
ing methods, for speaker identification and retrieval. By repre-
senting each utterance as a binary code, speaker hashing can re-
duce the storage cost dramatically. Furthermore, we can achieve
constant or sub-linear query speed based on binary codes. How-
ever, existing speaker hashing methods [1, 3] are based on i-
vector. Specifically, each utterance is represented as an i-vector
in the first stage. Then the hash function is utilized to generate
binary codes for utterances in the second stage. On one hand,
the retrieval performance of them is limited by i-vector repre-
sentations. On the other hand, existing speaker hashing methods
are two-stage methods and they cannot learn optimally compat-
ible feature for hashing. Hence, the retrieval performance of
these methods is far from satisfactory in real applications.

To overcome the drawbacks of existing speaker hashing
methods, in this paper we propose a novel deep hashing method,
called deep additive margin hashing (DAMH). The contribu-
tions of this paper are listed as follows:

• DAMH is an end-to-end deep hashing method for
speaker identification and retrieval. To the best of our
knowledge, DAMH is the first deep hashing method for
speaker identification and retrieval task. Compared with
existing speaker hashing methods, DAMH can perform
audio feature learning and binary code learning simulta-
neously. Hence, these two procedures can give feedback
to each other.

• DAMH utilizes additive margin softmax loss to super-
vise speaker hashing. Angular margin added in the loss
makes the learned binary codes more discriminative.

• Experiments on a large-scale audio dataset Vox-
Celeb2 demonstrate that DAMH can outperform exist-
ing speaker hashing methods to achieve state-of-the-art
performance.

2. Related Works
In this section, we briefly review the related works, including
real-value based speaker embedding and speaker hashing.

2.1. Real-value based Speaker Embedding

To perform speaker embedding, i-vector [4] was proposed to
represent the GMM super vector in a single total variability
space instead of two distinct spaces, i.e., speaker space and
channel space. Modeling all variability as a single manifold
has superior performance in this total variability model (TVM).
The i-vector is the vector of latent factors which represent the
speaker information of a given utterance. After the TVM model



is trained using the EM algorithm, i-vector can be extracted with
the maximum a posteriori (MAP) for each utterance.

With the rise of deep learning [7], some works [2, 5, 6, 8]
have been developed by using DNN for learning speaker em-
bedding and achieved promising performance. There mainly
exist two categories of DNN based speaker embedding meth-
ods. One aims to classify speakers using the frame level fea-
ture [5]. The other tries to classify speakers using the utter-
ance level feature [2]. After training, intermediate layer fea-
tures, which might be extracted from a single layer or multiple
intermediate layers, are used as speaker embedding.

With the rapid growth of audio data in real applications,
real-value based retrieval usually suffers from high storage cost
and low query speed.

2.2. Speaker Hashing

To address the inefficiency problem in real-value based re-
trieval, many hashing methods have been proposed [9, 10, 11,
12]. There have appeared two speaker hashing methods [1, 3]
for speaker identification and retrieval.

In [1], locality sensitive hashing (LSH) [9] over i-vectors
is applied to achieve faster speaker retrieval. Specifically, a
d-dimensional i-vector v is transformed to a lower dimensional
vector with a random weight matrix A ∈ Rd×K drawn from
a Gaussian distribution, where K < d. Then an element-wise
sign function is adopted to turn the lower dimensional vector
into the binary code b. The binary code b can be calculated
based on the equation: b = sign(ATv).

Because LSH based speaker hashing method in [1] uti-
lizes random projection matrix as hash functions, it usually re-
quires long binary codes to achieve satisfactory accuracy. To
improve the retrieval performance, Hamming distance metric
learning (HDML) [13, 3] has been applied for speaker identi-
fication. HDML is a triplet-based supervised hashing method,
which tries to preserve the relative similarity defined over triplet
inputs like {x,x+,x−}. Here, {x,x+,x−} is constructed
based on an anchor sample x, its similar sample x+ and its
dissimilar sample x−. HDML employs triplet-based model
by adopting a hinge loss over the learned triplet binary codes.
In [3], HDML was applied for speaker identification and re-
trieval task.

Although aforementioned speaker hashing methods have
been used for speaker identification and retrieval, the retrieval
performance is far from satisfactory as these methods cannot
fully exploit the power of feature learning. In this paper, we
propose a deep hashing method, which will be presented in the
following section, to perform feature learning and binary code
learning seamlessly.

3. Deep Additive Margin Hashing

In this section, we present deep additive margin hash-
ing (DAMH) in detail, including model formulation and learn-
ing algorithm.

3.1. Model

The proposed DAMH is shown in Figure 1, which consists of
two components, i.e., feature learning part and objective func-
tion part.

AM-Softmax Loss

θ

Quantization Loss

b

h

PoolingConvolutionsConvolutions
Objective Function PartFeature Learning Part

Figure 1: The end-to-end deep learning framework of DAMH.

Table 1: CNN architecture modified from ResNet-34 for spec-
trogram input. K represents the binary code length and C rep-
resents the number of speakers in training set.

Layer Configuration

conv1 7× 7, 64, stride 2
max pooling 3× 3 max pooling, stride 2

conv2 x
[
3× 3, 64,BN,ReLU

3× 3, 64,BN

]
× 3

conv3 x
[
3× 3, 128,BN,ReLU

3× 3, 128,BN

]
× 4

conv4 x
[
3× 3, 256,BN,ReLU

3× 3, 256,BN

]
× 6

conv5 x
[
3× 3, 512,BN,ReLU

3× 3, 512,BN

]
× 3

conv6 16× 1, 512, stride 1
avg. pooling 1× 1 adaptive avg. pooling, stride 1
hash layer 512×K, sign

classification layer K × C

3.1.1. Feature Learning Part

The feature learning part of DAMH model uses a convo-
lutional neural network (CNN) architecture modified from
ResNet-34 [14], which is shown in Table 1. As shown in Ta-
ble 1, the CNN model contains six groups of convolutional lay-
ers, one max pooling layer, one average pooling layer, one hash
layer and one classification layer. The first convolutional layer
contains 64 convolution filters where the kernel size is 7 × 7.
Following the first convolutional layer, a max pooling layer is
adopted. The second to the fifth groups of convolutional layers,
which contain 3, 4, 6 and 3 blocks respectively, are designed
in a skip connection style. The first convolutional layer in each
block is followed by a batch normalization (BN) layer and a
ReLU layer successively. The second convolutional layer in
each block is only followed by a BN layer. After the fifth group
of convolutional layers conv5 x, we can get the 512 channels
of 16 × t intermediate feature maps, where t is determined by
the length of audio segment. Then the sixth convolutional layer
conv6 is employed to combine local frequency features for each
channel, followed by an adaptive average pooling layer avg.
pooling to calculate a temporal mean of the t frames. These
modifications make the model focus on frequency variance in-
stead of temporal position. Hence, the capability of capturing
speaker information is improved. After that, a hash layer trans-
forms the feature from a 512-dimensional real-valued vector
into a binary code vector of K bits. Then the binary code will
be utilized as input of the classification layer.

Please note that in DAMH the architecture of ResNet-34 is
used as an example for illustration, which may be replaced by



other network architectures.

3.1.2. Objective Function Part

Given an input data xi, we define the output of the hash layer as
bi = sign(f(xi; Θcnn)) ∈ {−1,+1}K , where Θcnn denotes
the parameters of the CNN architecture except for the classifica-
tion layer. Then we adopt the binary codes as the input of clas-
sification layer. Given N training examples, we can define the
objective function with additive margin softmax (AM-Softmax)
loss [15] as follows:

min L = − 1

N

N∑
i=1

log
es(θyi,i−m)

es(θyi,i−m) +
∑C
j=1,j 6=yi e

s·θj,i
,

s.t. bi ∈ {−1,+1}K , ∀i ∈ {1, . . . , N}, (1)

where yi ∈ {1, . . . , C} denotes the class label of input xi.
θj,i is the cosine similarity between W∗j and bi, i.e., θj,i =

WT
∗jbi

‖W∗j‖‖bi‖
. Here, W denotes the parameters of the classifi-

cation layer and W∗j is the jth column of W, bi denotes the
binary code of xi,m is the additive margin, s is a scaling hyper-
parameter. By minimizing the objective function L defined in
problem (1), the training examples of the same class will be
mapped to similar binary codes with smaller Hamming distance
than that of training examples from different classes.

However, as the sign function is adopted to get the binary
code in the hash layer, we cannot back-propagate the gradient to
Θcnn due to the zero-gradient problem. In this paper, we utilize
tanh(·) to approximate sign(·) and rewrite problem (1) as the
following form:

min L̃ =− 1

N

N∑
i=1

log
es(θ̃yi,i−m)

es(θ̃yi,i−m) +
∑C
j=1,j 6=yi e

s·θ̃j,i

+
λ

N

N∑
i=1

‖bi − hi‖22,

s.t. bi ∈ {−1,+1}K , ∀i ∈ {1, . . . , N}, (2)

where hi = tanh(f(xi; Θcnn)), θ̃j,i =
WT

∗jhi

‖W∗j‖‖hi‖
, and λ is a

hyper-parameter.

3.2. Learning

We adopt an alternating learning algorithm to learn binary codes
{bi}Ni=1 and neural network parameters Θ = {Θcnn;W}.
More specifically, we learn one group of parameters with an-
other group of parameters fixed.

3.2.1. Update {bi}Ni=1 with Θ Fixed

When Θ is fixed, we can rewrite problem (2) as follows:

min L̃({bi}Ni=1)=
1

N

N∑
i=1

‖bi − hi‖22

= − 2

N

N∑
i=1

bT
i hi + const,

s.t. bi ∈ {−1,+1}K , ∀i ∈ {1, . . . , N},

where const denotes a constant.
The elements in the binary code vector bi should keep the

same sign as the corresponding elements in hi to maximize

Algorithm 1 Learning algorithm for DAMH

Input: X = {xi}Ni=1: training utterances;
y = {yi}Ni=1: person identities for training utterances;
K: binary code length.

Output: Θ and {bi}Ni=1.
1: Procedure
2: Initialize deep neural network parameters Θ, mini-batch

size M and iteration number T ;
3: for iter = 1→ T do
4: for k = 1→ N/M do
5: Randomly select M samples to construct a mini-

batch;
6: Calculate hi by forward propagation for each xi in the

mini-batch;
7: Update bi according to bi = sign(hi);
8: Calculate the gradient ∂L̃

∂W
and ∂L̃

∂hi
according to (3)

and (4);
9: Calculate the gradient ∂L̃

∂Θcnn
using chain rule;

10: Update Θ based on mini-batch SGD algorithm;
11: Increase margin m gradually;
12: end for
13: end for

bT
i hi. Thus we can get the following closed-form solution:

bi = sign(hi), ∀i ∈ {1, . . . , N}.

Here, sign(·) is an element-wise sign function.

3.2.2. Update Θ with {bi}Ni=1 Fixed

When {bi}Ni=1 is fixed, we can utilize back-propagation to up-
date Θ according to the following gradients:

∂L̃
∂W∗j

=
N∑
i=1

[
∂L̃
∂θ̃j,i

1

‖W∗j‖‖hi‖

(
hi −WT

∗jhi
W∗j

‖W∗j‖2

)]
,

(3)

∂L̃
∂hi

=
C∑
j=1

[
∂L̃
∂θ̃j,i

1

‖W∗j‖‖hi‖

(
W∗j −WT

∗jhi
hi

‖hi‖2

)]

−
2λ

N
(bi − hi). (4)

Then we can use chain rule to compute ∂L
∂Θcnn

. Based on
the computed gradients, we utilize mini-batch stochastic gradi-
ent descent (SGD) to update Θ.

The whole learning algorithm for DAMH is summarized in
Algorithm 1.

4. Experiment
To verify the effectiveness of DAMH, we carry out experiments
on a workstation with an Intel (R) CPU E5-2620V4@2.1G of 8
cores, 128G RAM and an NVIDIA (R) GPU TITAN Xp.

4.1. Dataset

VoxCeleb2 [2] is a widely used dataset for speaker recogni-
tion (identification) task. We use this dataset for evaluating
DAMH and baselines. VoxCeleb2 collected the utterances from
YouTube videos containing thousands of speakers which span
different races and a wide range of different accents. Back-
ground noise from a large number of environments and over-



Table 2: Training/validation/test split. POI:Person of Interest.

Dataset # of Training Validation Test

VoxCeleb2 POIs 3,641
utterances 903,572 18,205 36,410

lapping speech make speaker identification and retrieval chal-
lenging on this dataset.

We remove speakers whose utterance numbers are less than
one hundred. The remaining 958,187 utterances from 3,641
speakers are divided into training set, validation set and test set.
Validation set and test set contain five and ten utterances of each
speaker respectively. Details of the training set, validation set
and test set are described in Table 2.

4.2. Baselines and Evaluation Protocols

Two speaker hashing methods, LSH [9, 1] and HDML [13, 3],
are selected as baselines. Besides these two methods, other
hashing methods can also be utilized for speaker identifica-
tion and retrieval. We choose two representative hashing
methods, iterative quantization (ITQ) [10] and isotropic hash-
ing (IsoH) [16], as baselines for comprehensive comparison.

We utilize Gaussian mixture model - universal background
model (GMM-UBM) [17] to extract i-vector. Specifically,
GMM-UBM uses 20-dimensional mel-frequency cepstral co-
efficients (MFCC) as input and extracts 400-dimensional i-
vector. After that, we use linear discriminant analysis (LDA)
and within-class covariance normalization (WCCN) [18] to re-
duce the dimensionality of i-vector to 150.

For our proposed DAMH, we randomly slice a 3-second
utterance from each original utterance for training. A sliding
Hamming window is used to compute the spectrogram of each
utterance. Feature length, window width and step-size are set
to 512, 25ms and 10ms respectively. Normalization along the
axis of frequency is performed on the features. Margin m of
DAMH loss function is set to a small value at the beginning and
gradually increases during the training procedure. m will be
fixed after reaching 0.35. s and λ are set to 30.0 and 0.1 × 1

K
respectively, where K is the length of binary codes. We set
the mini-batch size to 64 and tune the learning rate from 10−2

to 10−5. Each model is trained for 36 epochs and the average
training time for each epoch is 178 minutes.

We select top-1 accuracy and mean average preci-
sion (MAP) to evaluate the proposed DAMH and baselines for
speaker identification and retrieval, respectively. Furthermore,
we report the retrieval time and storage cost for real-value based
methods and our DAMH to verify the efficiency of DAMH.

4.3. Accuracy

The top-1 accuracy for speaker identification task is presented
in Table 3 with binary code length being 32, 64, 96, 128 and
256 respectively. As the dimensionality of i-vector is less
than 256, the accuracy for IsoH and ITQ, which are based
on principal component analysis (PCA), cannot be calculated
when the binary code length is 256. Besides all hashing base-
lines, we also utilize two real-value based methods, i-vector
and AM-Softmax, for comparison. Here, AM-Softmax denotes
the method using real-valued features learned with a variant of
DAMH without the binary constraint. We can see that our pro-
posed DAMH can outperform all hashing baselines to achieve
the highest accuracy. Comparing DAMH with real-value based
methods, we can see that DAMH outperforms i-vector. DAMH
with 256 bits can achieve comparable accuracy compared with
AM-Softmax.

Table 3: Top-1 accuracy (%) of speaker identification.

Method Code length
32 64 96 128 256

DAMH 89.98 94.72 96.16 97.74 98.19
IsoH 27.81 54.24 65.54 71.67 N/A
ITQ 28.88 55.82 67.19 72.93 N/A
HDML 27.58 55.48 67.25 73.03 82.33
LSH 9.13 28.01 44.31 54.23 75.80
i-vector 93.81
AM-Softmax 98.65

Table 4: MAP (%) of speaker retrieval.

Method Code length
32 64 96 128 256

DAMH 72.87 88.18 90.38 92.20 94.55
IsoH 4.95 10.90 14.28 16.28 N/A
ITQ 5.78 12.59 16.46 18.60 N/A
HDML 6.55 14.65 43.23 49.89 61.43
LSH 0.79 2.86 5.98 8.65 18.20
i-vector 27.70
AM-Softmax 95.82

In Table 4, we present the MAP for speaker retrieval task.
From Table 4, we can find that DAMH can outperform all hash-
ing baselines in all cases. Furthermore, DAMH can outper-
form i-vector, and DAMH with 256 bits can achieve comparable
MAP compared with AM-Softmax.

4.4. Efficiency

In real applications, real-value based speaker identification and
retrieval methods might be impractical for massive audio data.
Hashing based retrieval is used to enable fast query based on
binary representation.

We report the retrieval time for DAMH and real-value based
methods in Table 5. From Table 5, we can find that DAMH
is faster than real-value based methods with comparable top-1
accuracy. DAMH can also reduce the storage cost compared
with real-value based methods. Hence, DAMH is more practical
than real-value based methods in real applications.

Table 5: Top-1 accuracy (%), retrieval time (in second) and
database storage cost (in MB) of speaker identification.

Method #bit/dim Accuracy Time Storage cost

DAMH 64 bits 94.72 0.1327 5
256 bits 98.19 0.1660 23

i-vector 150 93.81 0.3395 1018
AM-Softmax 512 98.65 0.6509 3539

5. Conclusion
In this paper, we propose a novel deep hashing method, called
deep additive margin hashing (DAMH), for speaker identifica-
tion and retrieval. To the best of our knowledge, DAMH is the
first deep hashing method for speaker identification and retrieval
task. Experiments on a large scale audio dataset show that our
proposed DAMH can outperform baselines to achieve state-of-
the-art retrieval performance.
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