

Asymmetric Deep Supervised Hashing Qing-Yuan Jiang & Wu-Jun Li LAMDA Group, Department of Computer Science and Technology, Nanjing University, Nanjing, China.

jiangqy@lamda.nju.edu.cn,liwujun@nju.edu.cn

Introduction

Nearest Neighbor Search (NNS)

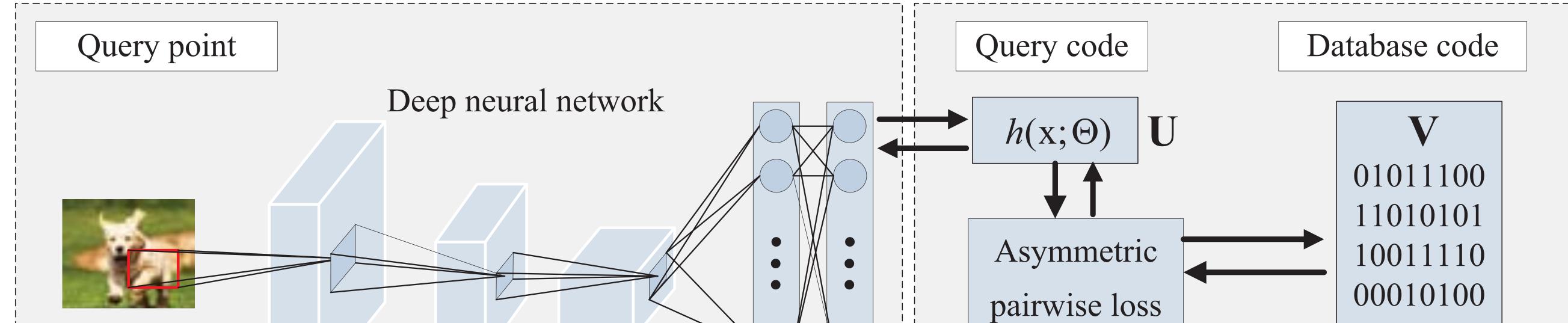
•Given a query point *q*, return the points closest to *q* in the database (e.g., image retrieval).

~___

Model

Model architecture.

The end-to-end deep learning architecture for ADSH



Experiment

Datasets.

•**MS-COCO**: 82,783 training, 40,504 validation images which belong to 91 categories. 5,000 images (250 images per category from validation set) are adopted as test set.

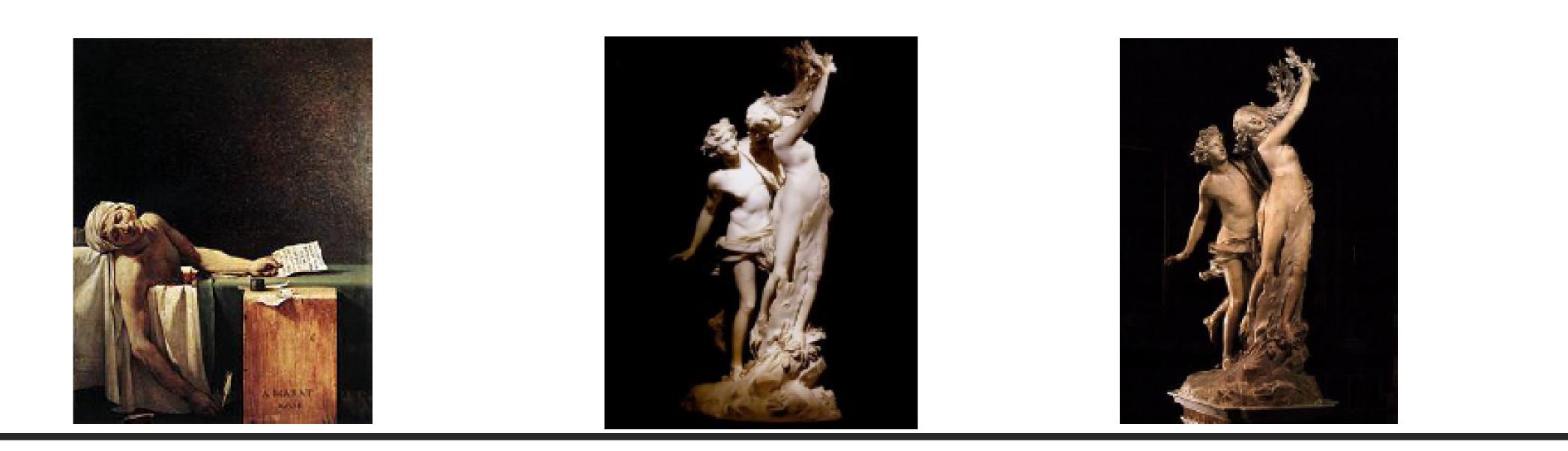
CIFAR-10: 60,000 32×32 color images which are categorized into 10 classes (6000 images per class). It is a single-label dataset.
NUS-WIDE: 270,000 images which belong to 81 classes. The 21

Underlying many machine learning, data mining, information retrieval problems. Challenge for NNS in big data applications: Curse of dimensionality

-Storage cost

–Search (query) speed

Similarity Preserving Hashing for NNS



h(Mart Assassine) h(Apollo and Daphne) h(Apollo and Daphne)

Feature Learning Part 01110100 Loss Function Part 01110100

•Feature learning part.

–Feature learning part contains a deep neural network model.–Pretrained CNN-F model:

5 convolutional layers + 3 fully-connected layers. –Learning deep neural network only for query data points.

Loss function part.

$$\begin{split} \min_{\Theta,\mathbf{V}} J(\Theta, \mathbf{V}) &= \sum_{i \in \Omega} \sum_{j \in \Gamma} \left[\tanh(F(\mathbf{y}_i; \Theta))^T \mathbf{v}_j - cS_{ij} \right]^2 \\ &+ \gamma \sum_{i \in \Omega} [\mathbf{v}_i - \tanh(F(\mathbf{y}_i; \Theta))]^2 \\ \text{s.t.} \quad \mathbf{V} \in \{-1, +1\}^{n \times c}, \\ -\text{Query images set } \mathbf{Y} &= \{\mathbf{y}_i\}_{i=1}^m. \\ -\text{Pairwise labels } \mathbf{S} &= \{S_{ij}\} \text{ with } S_{ij} \in \{-1, 1\}. \\ -\text{Binary codes } \mathbf{V} &= \{\mathbf{v}_j^T\}_{j=1}^n \text{ for database set.} \\ -\Theta \text{ is the parameters for deep neural network.} \\ -\text{The output of deep neural network is defined as } F(\mathbf{y}_i; \Theta) \text{ for given } \\ \text{query point } \mathbf{y}_i. \\ -\text{Relaxed binary codes } \widetilde{\mathbf{U}} &= \{\widetilde{\mathbf{u}}_i^T\}_{i=1}^m \text{ for query set. Here, } \widetilde{\mathbf{u}}_i = \\ \tanh(F(\mathbf{y}_i; \Theta)) \text{ and } \mathbf{z}_i = F(\mathbf{y}_i; \Theta). \end{split}$$

most frequent classes are adopted for evaluation. For these classes, the number of images of each class is at least 5000.

Baselines.

•Unsupervised hashing: ITQ [CVPR-11].

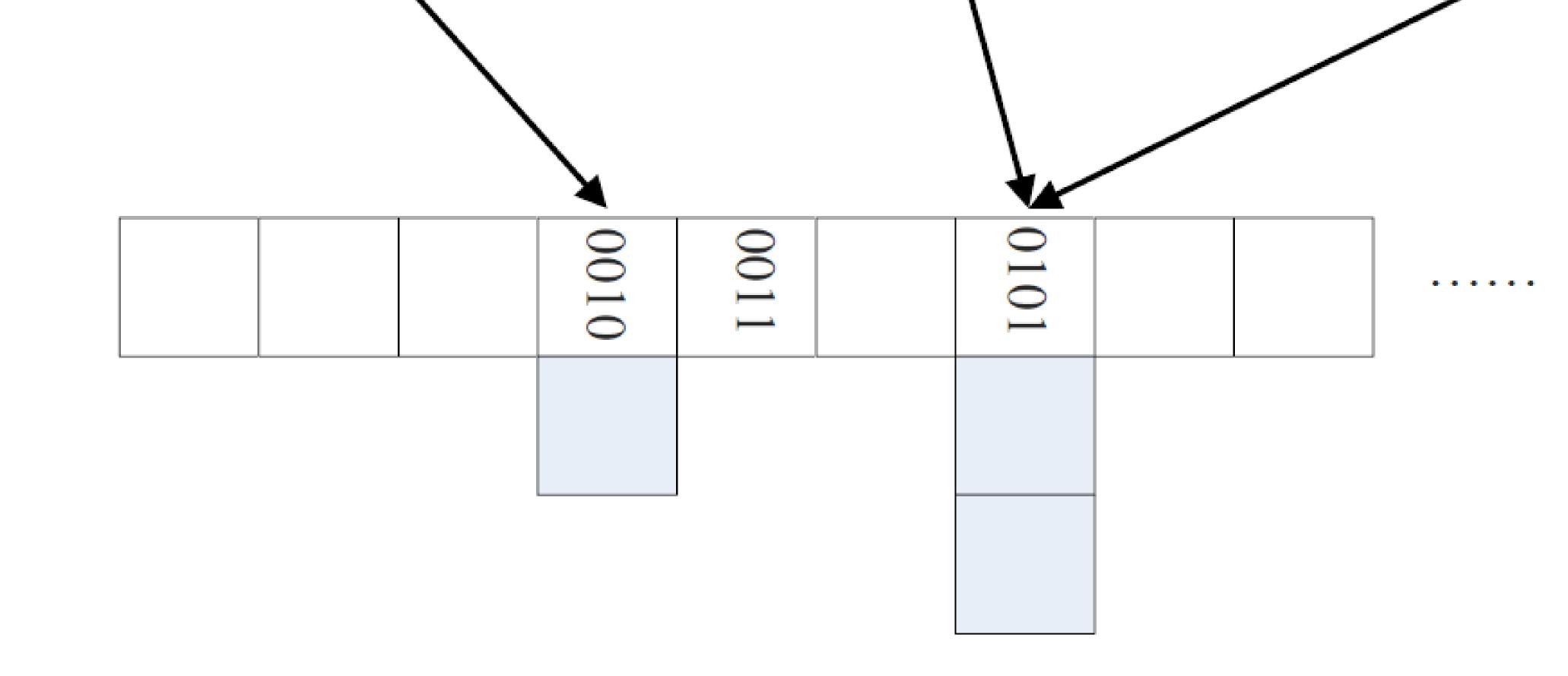
•Supervised hashing: Lin:Lin [NIPS-12], Lin:V [NIPS-12], LFH [SIGIR-14], FastH [CVPR-14], SDH [CVPR-15], COSDISH [AAAI-16], ADGH [AAAI-17].

•Deep Supervised Hashing: DPSH [IJCAI-16], DSH [CVPR-16], DHN [AAAI-16].

•Among all baselines, Lin:Lin, Lin:V and ADGH are asymmetric hashing methods.

MAP on three datasets.

Method	MS-COCO			CIFAR-10			NUS-WIDE			
	#24	#32	#48	#24	#32	#48	#24	#32	#48	
ITQ	.6326	.6308	.6338	.2754	.2861	.2941	.7361	.7457	.7553	
Lin:Lin	.6722	.6701	.6736	.6312	.6079	.6013	.5704	.5627	.5555	
LFH	.7389	.7580	.7725	.5738	.6414	.6927	.7681	.7949	.8135	
FastH	.7478	.7544	.7604	.6632	.6847	.7020	.7692	.7817	.8037	
SDH	.7078	.7115	.7164	.6334	.6514	.6603	.7998	.8017	.8124	
COSDISH	.6924	.7312	.7589	.6614	.6802	.7016	.7406	.7843	.7964	
KADGH	N/A	N/A	N/A	.6607	.6701	.6829	N/A	N/A	N/A	
DPSH	.7667	.7729	.7777	.7204	.7341	.7464	.8249	.8351	.8442	
DSH	.7176	.7156	.7220	.7421	.7703	.7992	.7313	.7401	.7485	
DHN	.7656	.7691	.7740	.7213	.7233	.7332	.8013	.8051	.8146	
ADSH	.8590	.8633	.8651	.9280	.9310	.9390	.8784	.8951	.9055	
ADSH*	.8673	.8641	.8503	.9636	.9632	.9605	.9049	.9088	.9119	
ADSH* adopts pretrained resnet50 for feature learning.										
MAP with larger training set.										
Method		MS-COCO			CIFAR-10			NUS-WIDE		
	#2	24 #3	2 #48	3 #24	#32	#48	#24	#32	#48	
Lin:V	.78	303 .78	12.784	2.816	0.8038	3.7993	.7565	.7615	.7605	
LFH-D	.77	29.80	63.816	5.726	7.7712	2.8333	.8351	.8604	.8790	
SDH-D		24.770								
COSDISE	I-D.76	685.80	52.794	.3	0.8802	2.8771	.8546	.8636	.8752	
KADGH-	$D \mid N \rangle$	/A N/	A N/	A .871	0.8759	9.8749	N/A	N/A	N/A	
ADSH	.85	590 .86	33.865	51.928	0.9310).9390	.8784	.8951	.9055	
ADSH*	.86	73.864	41.850	3.963	6.9632	2.9605	.9049	.9088	.9119	



Reduce dimensionality and storage cost
Fast search speed

-By using hash-code to construct an index, we can achieve constant or sub-linear search time complexity.

-Exhaustive search is also acceptable because the distance calculation cost is cheap with binary representation.

Motivation

Deep supervised hashing can achieve better performance.
Most existing deep hashing methods adopt a symmetric strategy to learn one deep hash function.

The training of existing symmetric methods is typically time-consuming (O(n²) or even O(n³)).
It is hard for these methods to effectively utilize the supervised information.

Alternating Learning Algorithm

•Learn Θ with V fixed: back propagation.

-update deep neural network parameters by using BP algorithm. $\frac{\partial J}{\partial \mathbf{z}_{i}} = \left\{ 2 \sum_{j \in \Gamma} [\widetilde{\mathbf{u}}_{i}^{T} \mathbf{v}_{j} - cS_{ij}] + 2\gamma(\widetilde{\mathbf{u}}_{i} - \mathbf{v}_{i}) \right\} \odot (1 - \widetilde{\mathbf{u}}_{i}^{2}). \quad (1)$

•Learn V with Θ fixed: discrete cyclic coordinate descent.

-update binary codes V bit by bit. -for each bit V_{*k} :

 $\mathbf{V}_{*k}^{*} \doteq \underset{\mathbf{V}_{*k} \in \{-1,+1\}^{n}}{\operatorname{argmin}} J(\mathbf{V}_{*k}) = \|\mathbf{V}\widetilde{\mathbf{U}}^{T}\|_{F}^{2} + \operatorname{tr}(\mathbf{V}\mathbf{Q}^{T}) + \operatorname{const.}$ (2) where $\mathbf{Q} = -2c\mathbf{S}^{T}\widetilde{\mathbf{U}} - 2\gamma\overline{\mathbf{U}}$. Hence we have: $\mathbf{V}_{*k} = -\operatorname{sign}(2\widehat{\mathbf{V}}_{k}\widehat{\mathbf{U}}_{k}^{k}\widetilde{\mathbf{U}}_{*k}^{T} + \mathbf{Q}_{*k}).$

Training time on MS-COCO dataset.

Contribution

•The first deep hashing method which treats query points and database points in an asymmetric way.

• The training of ADSH is much more efficient than that of symmetric deep hashing methods.

• Achieve state-of-the-art retrieval performance.

Source code is available at: https://cs.nju.edu.cn/lwj/.

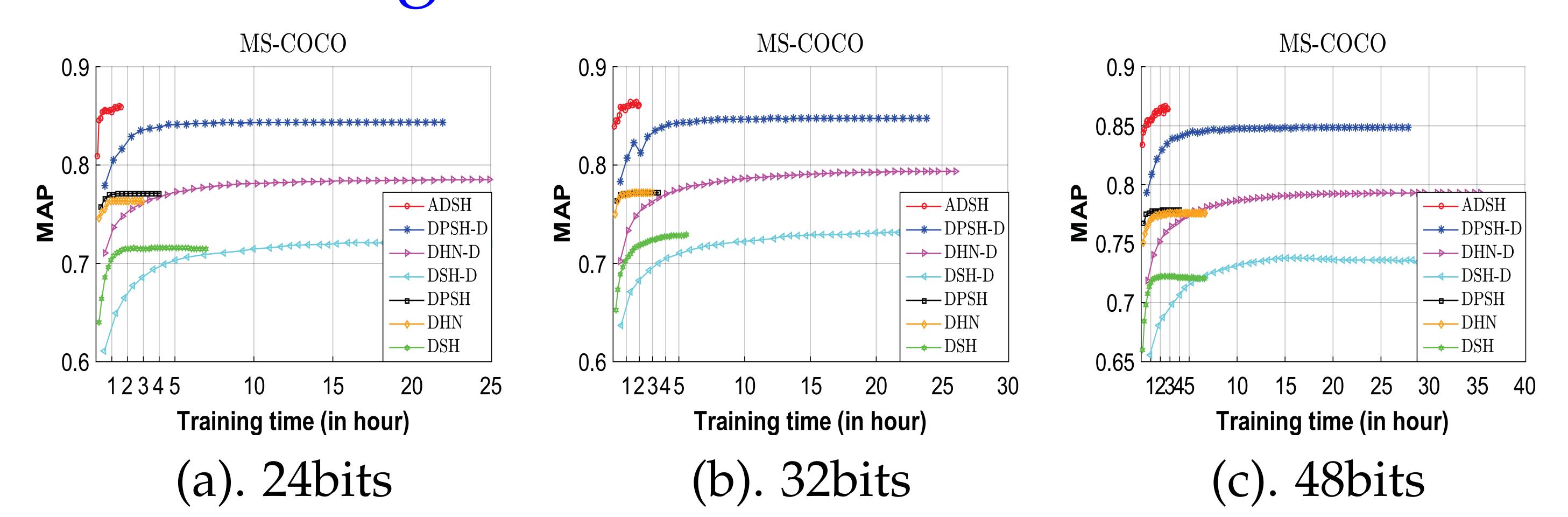
Learning algorithm

Algorithm 1 The learning algorithm of ADSH.procedure ADSH(\mathbf{Y}, S)> Images \mathbf{Y} and similarity S.Initialize Θ , \mathbf{V} , batch size: M and iteration number T_{out}, T_{in} .for $w < T_{out}$ doSample query set $\mathbf{Y}^{\Omega} \subset \mathbf{X}$ and similarity $\mathbf{S} \subset S$.for $s = 1, 2, \dots, m/M$ do> Update DNN.

Randomly sample M data points. Calculate output $F(\mathbf{y}_i; \Theta)$ by forward propagation. Calculate gradient according to Equation (1). Update parameter Θ by using back propagation. end for

for $k = 1 \rightarrow c$ do Update binary codes. Update V_{*k} according to Equation (2). end for

end for return Θ and V. \triangleright DNN parameters Θ and binary code V. end procedure



Hyper-parameters on MS-COCO dataset.

