

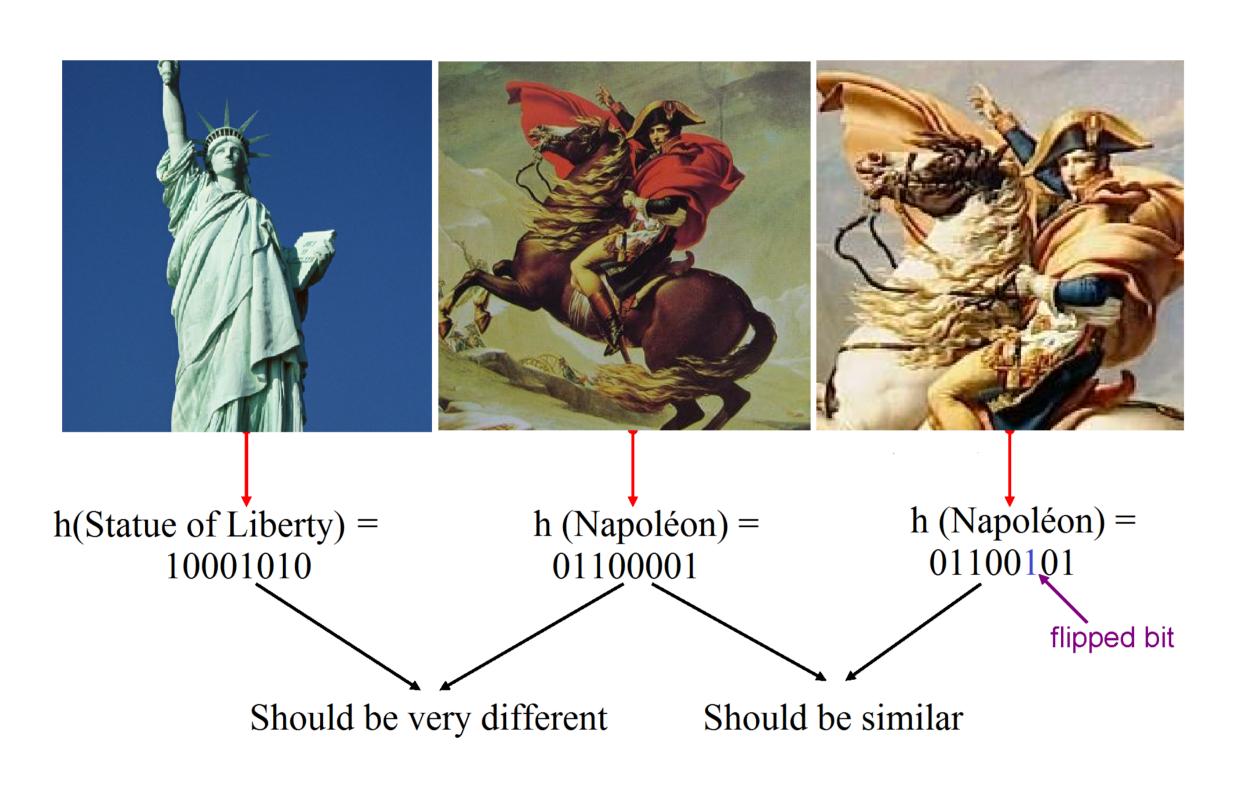
Introduction

Nearest Neighbor Search (NNS)

- •Given a query point q, return the points closest to q in the database (e.g., image retrieval).
- Challenges for NNS in big data applications: curse of dimensionality; storage cost; query speed

Hashing

- •Similarity preserved hashing is to map the data points from the original space into a Hamming space of binary codes with similarity preserved.
- Hashing can solve the above challenges.



Cross-Modal Hashing (CMH)

- Cross-modal retrieval: the modality of the query point is different from the modality of the points in database.
- •CMH: hashing for cross-modal retrieval. Low storage cost and fast query speed.

Motivation

- Almost all existing CMH methods are based on hand-crafted features.
- •Hand-crafted features might not be compatible for hash-code learning.

Contribution

- A novel CMH method, called deep cross-modal hashing (DCMH), for cross-modal retrieval applications.
- DCMH is an end-to-end learning framework with deep neural networks, one for each modality, to perform feature learning from scratch.
- DCMH achieves the state-of-the-art performance on three datasets.

• $\mathbf{Y} = {\{\mathbf{y}_j\}}_{j=1}^n$: *n* points of text modality.

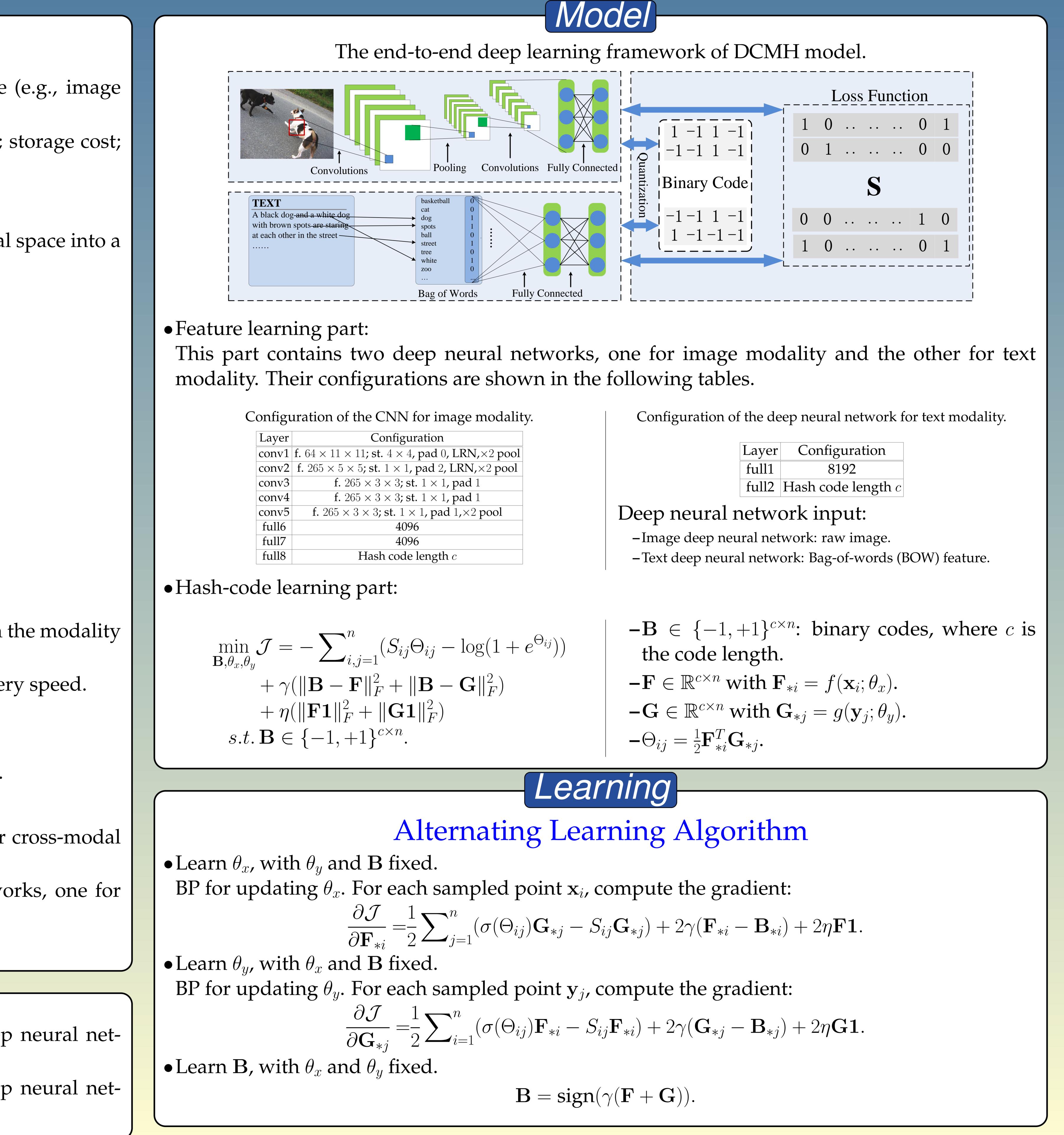
• $\mathbf{S} = \{S_{ij}\}_{n \times n}$: cross-modal similarities.

Notation

- $\mathbf{X} = {\mathbf{x}_i}_{i=1}^n$: *n* points of image modality. $f(\mathbf{x}_i; \theta_x)$: the output of deep neural network for image modality.
 - $g(\mathbf{y}_i; \theta_y)$: the output of deep neural network for text modality.

Deep Cross-Modal Hashing

Qing-Yuan Jiang & Wu-Jun Li LAMDA Group, Department of Computer Science and Technology, Nanjing University, Nanjing, China. jiangqy@lamda.nju.edu.cn,liwujun@nju.edu.cn



 $-\mathbf{B} \in \{-1, +1\}^{c \times n}$: binary codes, where c is

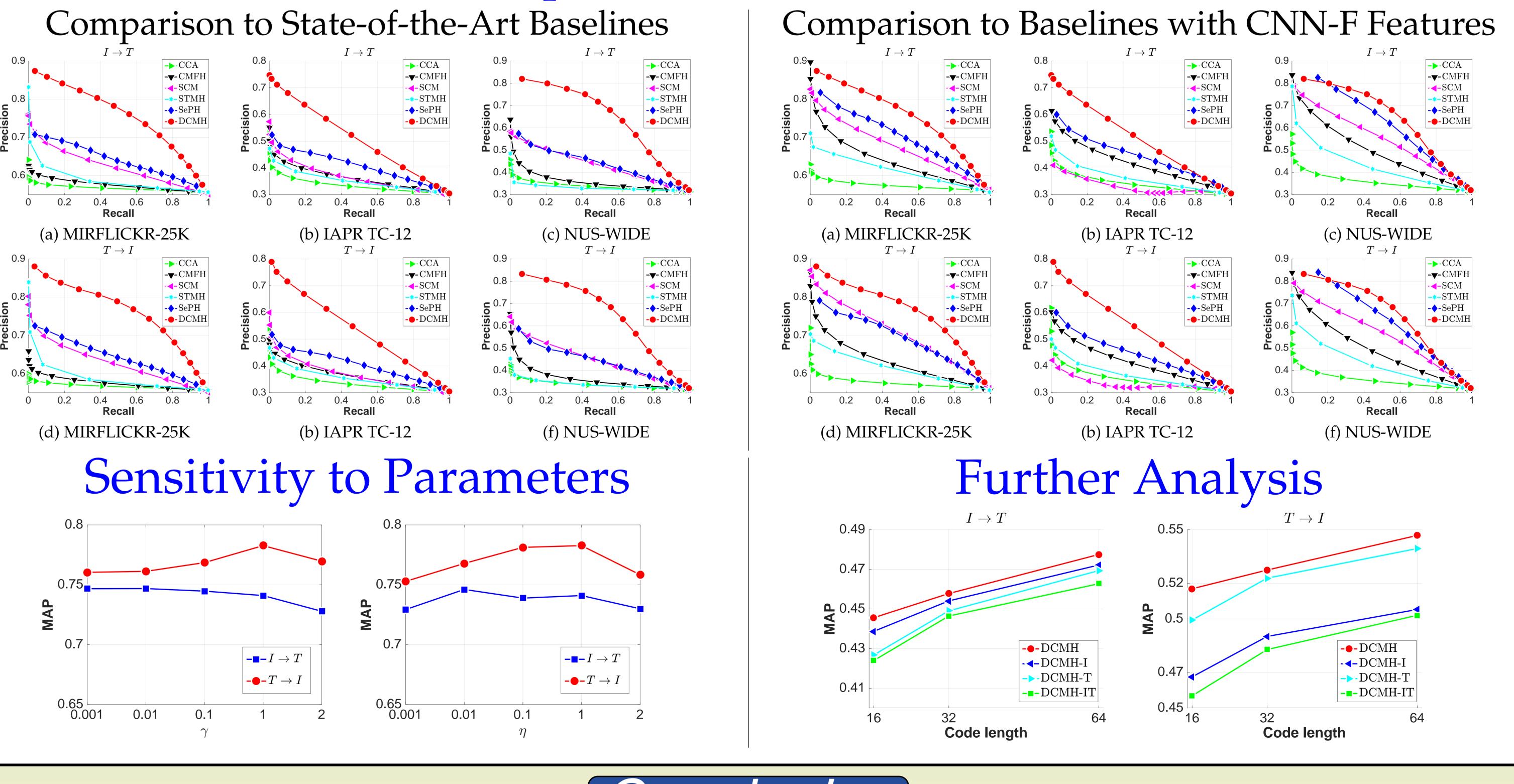
$$\gamma(\mathbf{G}_{*j} - \mathbf{B}_{*j}) + 2\eta \mathbf{G1}.$$

- test/training points.

Hamming Ranking Task (Mean Average Precision)

n to Ctato of the Art Decalin

Comparison to State-of-the-Art Baselines										
Task	Method	MIRFLICKR-25K			IAPR TC-12			NUS-WIDE		
		16	32	64			64	16	32	64
$I \rightarrow T$	DCMH	.741	.747	.749	.453	.473	.484	.590	.603	.609
	SePH	.657	.660	.662	.411	.416	.420	.479	.487	.489
	STMH	.592	.595	.598	.358	.373	.382	.397	.408	.415
	SCM	.629	.640	.648	.383	.390	.388	.465	.471	.482
	CMFH	.582	.581	.581	.368	.373	.379	.357	.362	.366
	CCA	.570	.566	.564	.335	.325	.319	.341	.334	.328
$T \rightarrow I$	DCMH	.783	.790	.793	.519	.538	.547	.639	.651	.657
	SePH	.648	.652	.655	.402	.407	.413	.449	.454	.459
	STMH	.580	.585	.586	.345	.357	.369	.361	.374	.384
	SCM	.620	.630	.637	.370	.373	.370	.437	.443	.450
	CMFH	.579	.577	.578	.362	.369	.377	.362	.367	.372
	CCA	.569	.566	.564	.334	.326	.320	.339	.332	.327



and hash-code learning.

Jatasets

• MIRFLICKR-25K: 25,000 image-text pairs which are annotated with one of the 24 unique labels. •IAPR TC-12: 20,000 image-text pairs which are annotated using 255 labels.

•NUS-WIDE: 260,648 image-text pairs. Each point is annotated with one or multiple labels from 81 concept labels. We select 195,834 image-text pairs that belong to the 21 most frequent concepts. • For MIRFLICKR-25K and IAPR TC-12: 2000/10000 test/training points. For NUS-WIDE: 2100/10500

Comparison to Baselines with CNN-F Features

Task	Method	MIRFLICKR-25K			IAPR TC-12			NUS-WIDE		
		16	32	64	16	32	64	16	32	64
$I \rightarrow T$	DCMH	.741	.747	.749	.453	.473	.484	.590	.603	.609
	SePH	.712	.719	.723	.444	.456	.464	.604	.617	.621
	STMH	.613	.622	.627	.378	.400	.413	.471	.486	.494
	SCM	.685	.692	.700	.369	.367	.380	.541	.549	.555
	CMFH	.638	.642	.645	.419	.423	.425	.490	.505	.510
	CCA	.572	.569	.567	.342	.336	.330	.360	.349	.339
$T \rightarrow I$	DCMH	.783	.790	.793	.519	.538	.547	.639	.651	.657
	SePH	.722	.726	.732	.442	.456	.465	.598	.603	.611
	STMH	.607	.615	.622	.369	.390	.404	.447	.468	.478
	SCM	.694	.701	.706	.345	.341	.347	.534	.541	.548
	CMFH	.637	.640	.643	.417	.421	.428	.503	.519	.523
	CCA	.574	.571	.569	.349	.344	.338	.361	.349	.340

Hash Lookup Task (Precision Recall Curve)

Conclusion

• DCMH is an end-to-end deep learning framework which can perform simultaneous feature learning

• DCMH can significantly outperform other baselines to achieve the state-of-the-art performance.