Deep Cross-Modal Hashing

Qing-Yuan Jiang, Wu-Jun Li

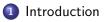
LAMDA Group National Key Laboratory for Novel Software Technology Collaborative Innovation Center of Novel Software Technology and Industrialization Department of Computer Science and Technology, Nanjing University, China

jiangqy@lamda.nju.edu.cn, liwujun@nju.edu.cn

July, 2017

< ロ > < 同 > < 三 > < 三 >

CVPR 17



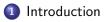
2 Deep Cross-Modal Hashing (DCMH)

Jiang and Li (LAMDA, CS, NJU)

▲ ■ ● ■ • つへで CVPR 17 2 / 21

<ロト < 同ト < ヨト < ヨト

Outline



Deep Cross-Modal Hashing (DCMH)

3 Experiment

< □ > < □ > < □ > < □ > < □ >

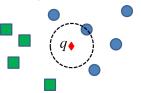
э

3 / 21

CVPR 17

Nearest Neighbor Search (NNS)

• Given a query point q, return the points closest to q in the database (e.g., image retrieval).



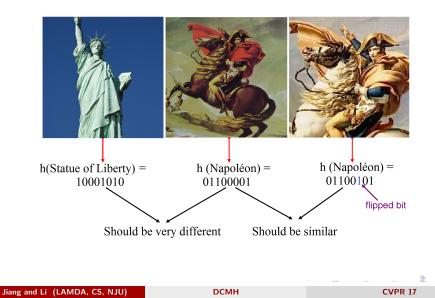
 Underlying many machine learning, data mining, information retrieval problems.

Challenge in Big Data Applications:

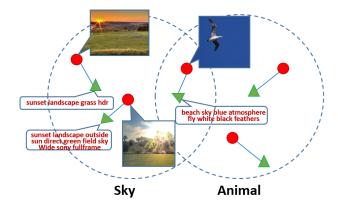
- Curse of dimensionality.
- Storage cost.
- Search (query) speed.

CVPR 17

Similarity Preserving Hashing



Cross-Modal Retrieval



• Given a query of either image or text, return images or texts similar to it in both feature space and semantics (label information).

Image: A matrix

Cross-Modal Hashing (CMH)

• CMH: the modality of a query point is different from the modality of the points in database.

Pros:

- Dimensionality reduction.
- Low storage cost.
- Fast query speed.

★ ∃ ► < ∃ ►</p>

CVPR 17

Motivation & Contribution

Motivation:

- Almost all existing CMH methods are based on hand-crafted features.
- Hand-crafted features might not be compatible for hash-code learning.

Contribution:

- An end-to-end framework, called deep cross-modal hashing (DCMH), is proposed for cross-modal retrieval application.
- DCMH achieves the state-of-the-art retrieval performance.

CVPR 17

Outline

2 Deep Cross-Modal Hashing (DCMH)

3 Experiment

<ロト < 同ト < ヨト < ヨト

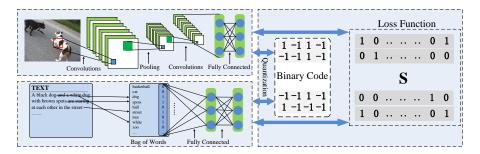
э

9 / 21

CVPR 17

DCMH Model

The end-to-end deep learning framework of DCMH model.



DCMH model contains two major parts: *Feature Learning Part* and *Hash-Code Learning Part*.

CVPR 17

Feature Learning Part

• This part contains two deep neural networks for feature learning.

Table: Configuration of the CNN for image modality.

	8 8
Layer	Configuration
conv1	f. $64 \times 11 \times 11$; st. 4×4 , pad 0, LRN, $\times 2$ pool
conv2	f. $265 \times 5 \times 5$; st. 1×1 , pad 2, LRN, $\times 2$ pool
conv3	f. $265 \times 3 \times 3$; st. 1×1 , pad 1
conv4	f. $265 \times 3 \times 3$; st. 1×1 , pad 1
conv5	f. $265 \times 3 \times 3$; st. 1×1 , pad $1, \times 2$ pool
full6	4096
full7	4096
full8	Hash code length c

Table: Configuration of the deep neural network for text modality.

Layer	Configuration				
full1	8192				
full2	Hash code length c				

(日)

CVPR 17

Hash-Code Learning Part

$$\min_{\mathbf{B},\theta_x,\theta_y} \mathcal{J} = -\sum_{i,j=1}^n (S_{ij}\Theta_{ij} - \log(1 + e^{\Theta_{ij}}))
+ \gamma(\|\mathbf{B} - \mathbf{F}\|_F^2 + \|\mathbf{B} - \mathbf{G}\|_F^2) + \eta(\|\mathbf{F}\mathbf{1}\|_F^2 + \|\mathbf{G}\mathbf{1}\|_F^2)
s.t. \ \mathbf{B} \in \{-1, +1\}^{e \times n}.$$

Notation:

- $\mathbf{X} = {\{\mathbf{x}_i\}_{i=1}^n / \mathbf{Y} = {\{\mathbf{y}_j\}_{j=1}^n : n \text{ points of image/text modality.}}$
- $\mathbf{S} = \{S_{ij}\}_{n \times n}$: cross-modal similarities.
- $\mathbf{B} \in \{-1, +1\}^{c \times n}$: binary codes.
- $\mathbf{F} \in \mathbb{R}^{c \times n}$ with $\mathbf{F}_{*i} = f(\mathbf{x}_i; \theta_x)$, here $f(\mathbf{x}_i; \theta_x)$ is the output of deep neural network for image modality.
- $\mathbf{G} \in \mathbb{R}^{c \times n}$ with $\mathbf{G}_{*j} = g(\mathbf{y}_j; \theta_y)$, here $g(\mathbf{y}_j; \theta_y)$ is the output of deep neural network for text modality.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

CVPR 17

12 / 21

•
$$\Theta_{ij} = \frac{1}{2} \mathbf{F}_{*i}^T \mathbf{G}_{*j}.$$

Jiang and Li (LAMDA, CS, NJU)

Alternating Learning Algorithm

Algorithm 1 The learning algorithm for DCMH.

Require: Image set \mathbf{X} , text set \mathbf{Y} , and cross-modal similarity matrix \mathbf{S} .

Ensure: Parameters θ_x and θ_y of the deep neural networks, and binary code matrix **B**.

Initialization Initialize neural network parameters θ_x and θ_y , mini-batch size $N_x = N_y = 128$, and iteration number $t_x = \lceil n/N_x \rceil$, $t_y = \lceil n/N_y \rceil$.

repeat

for $iter = 1, 2, \cdots, t_x$ do

Randomly sample N_x points from **X** to construct a mini-batch.

For each sampled point \mathbf{x}_i in the mini-batch, calculate $\mathbf{F}_{*i} = f(\mathbf{x}_i; \theta_x)$ by forward propagation.

 $\text{Calculate the gradient by using } \tfrac{\partial \mathcal{J}}{\partial \mathbf{F}_{*i}} = \tfrac{1}{2} \sum_{j=1}^{n} (\sigma(\Theta_{ij}) \mathbf{G}_{*j} - S_{ij} \mathbf{G}_{*j}) + 2\gamma(\mathbf{F}_{*i} - \mathbf{B}_{*i}) + 2\eta \mathbf{F1}.$

Update the parameter θ_x by using back propagation.

end for

for $iter = 1, 2, \cdots, t_y$ do

Randomly sample N_y points from **Y** to construct a mini-batch.

For each sampled point \mathbf{y}_j in the mini-batch, calculate $\mathbf{G}_{*j} = g(\mathbf{y}_j; \theta_y)$ by forward propagation.

Calculate the gradient by using $\frac{\partial \mathcal{J}}{\partial \mathbf{G}_{*j}} = \frac{1}{2} \sum_{i=1}^{n} (\sigma(\Theta_{ij}) \mathbf{F}_{*i} - S_{ij} \mathbf{F}_{*i}) + 2\gamma(\mathbf{G}_{*j} - \mathbf{B}_{*j}) + 2\eta \mathbf{G1}$.

CVPR 17

13 / 21

Update the parameter θ_y by using back propagation.

end for

Learn **B** according to $\mathbf{B} = \operatorname{sign}(\gamma(\mathbf{F} + \mathbf{G})).$

until a fixed number of iterations

Outline

Deep Cross-Modal Hashing (DCMH)

Jiang and Li (LAMDA, CS, NJU)

< □ > < □ > < □ > < □ > < □ >

э

14 / 21

CVPR 17

Hamming Ranking Task

Table: MAP on three datasets. The b	aselines are based on CNN-F features.
-------------------------------------	---------------------------------------

Task	Method	MIRFLICKR-25K		IAPR TC-12			NUS-WIDE			
		16	32	64	16	32	64	16	32	64
$I \rightarrow T$	DCMH	.741	.747	.749	.453	.473	.484	.590	.603	.609
	SePH	.712	.719	.723	.444	.456	.464	.604	.614	.621
	STMH	.613	.622	.627	.378	.400	.413	.471	.486	.494
	SCM	.685	.692	.700	.369	.367	.380	.541	.549	.555
	CMFH	.638	.642	.645	.419	.423	.425	.490	.505	.510
	CCA	.572	.569	.567	.342	.336	.330	.360	.349	.339
$T \rightarrow I$	DCMH	.783	.790	.793	.519	.538	.547	.639	.651	.657
	SePH	.722	.726	.732	.442	.456	.465	.598	.603	.611
	STMH	.607	.615	.622	.369	.390	.404	.447	.468	.478
	SCM	.694	.701	.706	.345	.341	.347	.534	.541	.548
	CMFH	.637	.640	.643	.417	.421	.428	.503	.519	.523
	CCA	.574	.571	.569	.349	.344	.338	.361	.349	.340

SePH [CVPR-15]; STMH [IJCAI-15]; SCM [AAAI-14]; CMFH [CVPR-14]; CCA [Biometrika-1936].

Jiang and Li (LAMDA, CS, NJU)

CVPR 17 15 / 21

Experiment

Hash Lookup Task

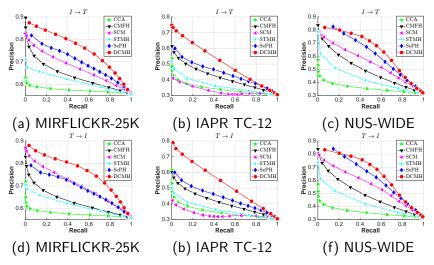


Figure: Precision-recall curves. The baselines are based on CNN-F features.

CVPR 17 16 / 21

< ロ > < 同 > < 三 > <

Sensitivity to Parameters

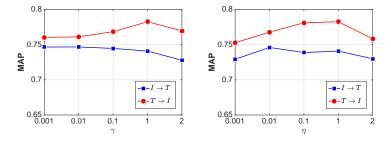


Figure: The influence of hyper-parameters.

CVPR 17

э

The Effectiveness of Feature Learning

- DCMH-I denotes the variant without image feature learning.
- DCMH-T denotes the variant without text feature learning.
- DCMH-IT denotes the variant without both image and text feature learning.

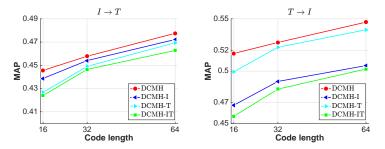


Figure: MAP on IAPR TC-12.

→ ∃ →

Outline

2 Deep Cross-Modal Hashing (DCMH)

Jiang and Li (LAMDA, CS, NJU)

► ▲ 茎 ▶ 茎 かへで CVPR 17 19 / 21

< □ > < □ > < □ > < □ > < □ >

Conclusion

- DCMH is an end-to-end deep learning framework which can perform simultaneous feature learning and hash-code learning.
- DCMH can significantly outperform other baselines to achieve the state-of-the-art performance.

CVPR 17

Thanks!

Paper and code are available at http://cs.nju.edu.cn/lwj

