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Multimodal Learning
• Goal: fuse multimodal data to boost model performance.
• Optimal Scenario: maximize information extraction from mul-

tiple modalities for better performance.
Modality Imbalance

• Phenomenon: MML underperforms single-modality models.
• Strong-Weak Modality 7→ Modality Imbalance
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Visual-Only

Visual in MML

Audio-Only

Audio in MML

• Alternating Learning: a novel MML learning paradigm to en-
hance the cross-modal interaction.

• MLA[CVPR’24]: enhance interaction through orthogonal pro-
jection:

ωa
t+1 = ωa

t − η · P v · ∇L

Issue in Orthogonal Projection
Poor Plasticity:
• The orthogonal projection

suffers from poor plasticity
problem, i.e., leading to
feasible gradient direction
becomes narrow.

• The poor plasticity problem
results in suboptimal solu-
tion.

Gradient Change:
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Contributions
• Propose flat projection-based gradient modification strategy.
• Introduce SAM based optimization to smooth objectives.
• IGM can achieve the best performance compared to STOAs.
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Two Key Components of IGM:

• Flat Projection Gradient Modification: Project updating direc-
tion, enhancing the interaction.

• SAM-based Optimization: Smooth the objective function, en-
hancing the flatness.

Flat Projection Gradient Modification:

• ①. Find Flat Direction: Decompose variance of activation by
SVD: UvΛv[Vv]⊤ = svd(Yv).

• ②. Relationship of Flatness and Singular Value: The flatness
of vv

i is determined by singular value λv
i .

• ③. Conduct Projection Matrix: Large λv 7→ More Sharp Loss:
Σv = exp(− τ

λvmax−λvmin
(Λv − λv

minI))

• ④. Project during Updating: Learning Another Modality: Tv =

UvΣv[Vv]⊤; ωa
t+1 = ωa

t − η · T v · ∇ωL.

SAM-based Optimization:

• ①. Perturb the Loss: LSAM(ω) = maxϵ:||ϵ||≤ρL(ω + ϵ).
• ②. Optimal perturbation: ϵ∗(ω) = argmax||ϵ||≤ρL(ω + ϵ).
• ③. Gradient of SAM Loss: ∇ωLSAM(ω) = ∇ωL(ω)|ω+ϵ∗(ω).

Integrating Two Key Components:

• Updating rule during learning:

ωa
t+1 = ωa

t − η · T v · ∇ωLSAM(ω)

Methodology

Experimental Settings
Datasets:
• CREMA-D: 7,442 audio-video pairs

with 6 emotional categories.
• KSounds: 19,000 audio-video pairs

with 31 action categories.
• Twitter2015: 5,338 image-text pairs

with 3 categories.
• Sarcasm: 24,635 image-text pairs with

2 categories.
Baselines:
• Unimodal: audio, video, image, text,

RGB, OF, Depth.
• Joint-Training: MSES [ACPR’19], OGR-

GB [CVPR’20], OGM [CVPR’22], DOMFN
[MM’22], MLSR [ACL’22], PMR [CVPR’23], AGM
[ICCV’23], SMV [CVPR’24], MMPareto [ICML’24].

• Alternating Learning: ReconBoost
[ICML’24] and MLA [CVPR’24].

Evaluation Protocols:
• Accuracy + MAP: audio-video.
• Accuracy + Mac-F1: image-text, RGB-

OF-Depth.

Comparison with SOTAs
Performance (Accuracy/MAP/Mac-F1):

Method
CREMA-D KSounds Twitter2015 Sarcasm NVGesture
Acc. MAP Acc. MAP Acc. Mac-F1 Acc. Mac-F1 Acc. Mac-F1

Unimodal-1 .6317 .6861 .5312 .5669 .7367 .6849 .8136 .8065 .7822 .7833
Unimodal-2 .4583 .5879 .5462 .5837 .5863 .4333 .7181 .7073 .7863 .7865
Unimodal-3 - - - - - - - - .8154 .8183
OGR-GB .6465 .6854† .6710 .7139 .7435 .6869 .8335 .8271 .8299 .8305
OGM .6694 .7173 .6606 .7144 .7492 .6874 .8323 .8266 - -
DOMFN .6734 .7372 .6625 .7244 .7445 .6857 .8356 .8262 - -
MSES .6156† .6683† .6471 .7063 .7184† .6655† .8418 .8360 .8112† .8147†

PMR .6659 .7030 .6656 .7193 .7425 .6860 .8360 .8249 - -
AGM .6707 .7358 .6602 .7252 .7483 .6911 .8402 .8344 .8278 .8282
MSLR .6546 .7138 .6591 .7196 .7252† .6439† .8423 .8369 .8286 .8292
ReconBoost .7484 .8124 .7085 .7424 .7442 .6834 .8437 .8317 .8413 .8632
SMV .7872 .8417 .6900 .7426 .7428 .6817 .8418 .8368 .8352 .8341
MMPareto .7487 .8535 .7000 .7850 .7358 .6729 .8348 .8284 .8382 .8424
MLA .7943 .8572 .7004 .7413 .7352† .6713† .8426 .8348 .8373 .8387
IGM w/o SAM .8026 .8830 .7159 .7623 .7395 .6912 .8455 .8390 .8487 .8634
IGM .8105 .8948 .7403 .7855 .7489 .6917 .8468 .8392 .8693 .8703

Ablation Study:
SAM GM Audio Video Multi

✘ ✘ 45.83% 63.17% 64.52%
✔ ✘ 58.60% 64.79% 73.42%
✘ ✔ 60.13% 65.06% 80.26%
✔ ✔ 61.16% 67.82% 81.05%

Params. Sensitivity:
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Further Analysis
Interactive Enhancement:

Method Initial Out Iters=1 Out Iters=2
Audio Video Audio Video

w/o a-GM .0325 .5312 .6803 .7231 .7482
w/o v-GM .0325 .5312 .7023 .7472 .7646

IGM .0325 .5312 .7023 .7557 .8105

Singular Values[L], Pretrained Model[M],
and Training Time[R]:
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(b). Pretrained Model.
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Loss Landscape Visualization:
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Experiments

• A flat-projection gradient modification based MML method is proposed to address the poor plasticity issue.
• SAM optimization algorithm is integrated in the loss function to smooth the objective function.
• Comprehensive experiments are conducted to demonstrate the superiority and effectiveness of IGM.
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