

Towards Equilibrium: An Instantaneous Probe-and-Rebalance Multimodal Learning Approach

Yang Yang, Xixian Wu, Qing-Yuan Jiang*

Nanjing University of Science and Technology

Speaker: Qing-Yuan Jiang

1 Background

CONTENTS

2 Methodology

3 Experiments

Background

Multimodal Learning (MML):

- Integrating data from multiple sensors.
- Making more reliable decisions.

Modality Imbalance:

- MML underperforms single-modality.
- Strong modality VS week modality.

Issues in Existing Rebalancing Methods

Deferred rebalancing strategy: addresses modal imbalance only after it has occurred!

Methodology

Multimodal Fusion with GMM

Unimodal Feature Extraction

Feature Normalization

Geodesic Multimodal Mixup

$$f_{GMM}(\bar{Z}_i^a, \bar{Z}_i^v, \lambda) = \frac{\sin(\lambda\theta)}{\sin(\theta)} \bar{Z}_i^a + \frac{\sin((1-\lambda)\theta)}{\sin(\theta)} \bar{Z}_i^v$$
where $\theta = \arccos(\langle \bar{Z}_i^a, \bar{Z}_i^v \rangle)$

Enable effortless adjustment of modality strength between different modalities.

Methodology

Instantaneous Probe-and-Rebalance for MML

2nd forward

Loss

Loss

CLS

Video

1st forward

 $\{\omega_t^a,\omega_t^v\}$

Loss

CLS

Audio

Instantaneous Probing Phase:

• Extract Multimodal representation.

$$\bar{Z}_i = f_{GMM}(\bar{Z}_i^a, \bar{Z}_i^v, \lambda_t^a),$$

$$\bar{P}_i = softmax(h(\bar{Z}_i)).$$

Evaluate modality strength.

$$\forall o \in \{a, v\},\$$

$$\mathcal{D}_{\mathrm{KL}}(\mathcal{P}^{o}|\bar{\mathcal{P}};\mathcal{T}_{t}) = \sum_{X_{i} \in \mathcal{T}_{t}} P_{i}^{o} \log \left(\frac{P_{i}^{o}}{\bar{P}_{i}}\right).$$

• Define instantaneous strength weight.

$$\omega_t^a \triangleq \frac{\mathcal{D}_{\mathrm{KL}}(\mathcal{P}^v|\mathcal{P};\mathcal{T}_t)}{\mathcal{D}_{\mathrm{KL}}(\mathcal{P}^a|\mathcal{P};\mathcal{T}_t) + \mathcal{D}_{\mathrm{KL}}(\mathcal{P}^v|\mathcal{P};\mathcal{T}_t)},$$

$$\omega_t^v \triangleq 1 - \omega_t^a.$$

• Update modality balanced weight.

$$\forall o \in \{a, v\},\$$

$$\hat{\lambda}_t^o = \omega_t^o$$
.

• Obtain balanced representation.

$$\hat{Z}_i = f_{GMM}(\bar{Z}_i^a, \bar{Z}_i^v, \hat{\lambda}_t^a),$$

$$\hat{P}_i = softmax(h(\hat{Z}_i)).$$

Update probing weight.

$$\forall o \in \{a, v\},\$$

$$\lambda_{t+1}^o = \begin{cases} \omega_t^o, & t = 0, \\ \alpha \lambda_t^o + (1 - \alpha) \omega_t^o, & t > 0. \end{cases}$$

 $Z^{a} \qquad \uparrow \qquad \uparrow \qquad \downarrow Z^{v}$ $\uparrow \qquad \lambda_{t}^{a} \qquad \lambda_{t}^{v} \qquad \hat{\lambda}_{t}^{a} \qquad \hat{\lambda}_{t}^{v} \qquad \uparrow$ Encoder Encoder

Probe but not learn

Learn under balanced status

Experiments

Main Results

Comparison with Naive MML

Lintaget	Metric	Unimodal			Naive Fusion			IPRM
Dataset	Menic	A/A/R/A/I	V/V/O/V/T	D/T	Concat	Sum	Weight	IF KIVI
CREMA-D A	Accuracy	45.83%	63.17%	N/A	63.61%	63.44%	66.53%	84.27% (†17.74%)
CKEMA-D	MAP	58.79%	68.61%	N/A	68.41%↓	69.08%	<u>71.34%</u>	90.66 % (†19.32%)
KSounds	Accuracy	54.12%	55.62%	N/A	64.55%	64.90%	65.33%	74.37% (†9.04%)
KSounas	MAP	56.69%	58.37%	N/A	<u>71.30%</u>	71.03%	71.10%	80.63 % (†9.33 %)
NVGesture A	Accuracy	78.22%	78.63%	81.54%	82.37%	80.50%↓	78.42%↓	85.89% (†3.52%)
NVGesiure N	Macro-F1	78.33%	78.65%	81.83%	<u>82.70%</u>	80.67%↓	79.39%↓	86.34 % (†3.64%)
IEMOCAP A	Accuracy	58.45%	30.71%	70.55%	75.97%	76.06%	69.29%↓	80.22% (†4.16%)
ILMOCAI N	Macro-F1	58.29%	11.75%	69.93%	75.88%	<u>76.03%</u>	68.91%↓	80.63% (14.60%)
Sarcasm A	Accuracy	71.81%	81.36%	N/A	82.86%	82.94%	82.65%	85.14% (†2.20%)
N	Macro-F1	70.73%	80.56%	N/A	82.40%	<u>82.47%</u>	82.19%	84.41% (†1.94%)

Comparison with Rebalanced MML

Dataset	Metric	OGR-GB			PMR		1	ReconBoost	MLA	LFM	IPRM
CREMA-D	Accuracy	64.65%	68.68%	66.12%	66.59%	67.33%	74.87%	75.57%	79.43%	83.62%	84.27% (†0.65%)
	MAP	73.92%	74.12%	73.72%	70.58%	78.07%	85.35%	81.40%		90.06%	
KSounds	Accuracy	67.22%	67.56%	65.82%	66.75%	67.91%	70.00%	68.55%	70.04%	72.53%	74.37% (†1.84%)
Ksounas	MAP	72.74%	72.82%	71.59%	72.74%	73.88%	78.50%	76.62%	79.45%	<u>78.97%</u>	80.63% (†1.66%)
NVGesture	Accuracy	82.99%	82.37%	N/A	N/A	82.79%	83.82%	83.86%	83.40%	84.36%	85.89% (†1.53%)
NVGesiure	Macro-F1	83.05%	82.84%	N/A	N/A	82.84%	84.24%	84.34%	83.72%	84.68%	86.34% (†1.66%)
IEMOCAP	Accuracy	70.10%	76.69%	N/A	N/A	77.51%	77.69%	76.87%	79.31%	78.41%	80.22% (†0.91%)
IEMOCAF	Macro-F1	69.90%	76.77%	N/A	N/A	77.29%	77.89%	77.08%	<u>79.73%</u>	78.51%	80.63 % (†0.90%)
Narcasm	Accuracy	82.86%	84.39%	83.60%	83.10%	83.06%	83.48%	84.37%	84.26%	84.97%	85.14% (†0.17%)
	Macro-F1	82.15%	83.78%	82.93%	82.56%	82.93%	82.84%	83.17%	83.48%	84.57%	<u>84.41%</u> (\doldow\doldow)

IPRM achieves superior performance in almost all cases!

Experiments

Additional Results

Ablation Study

Dataset	w/ L-Mixup	w/o EMA	One-Pass	IPRM
CREMA-D	75.53%	83.06%	83.47%	84.27%
KSounds	71.94%	73.91%	73.64%	74.37%
NVGesture	84.85%	85.27%	84.44%	85.89%
<i>IEMOCAP</i>	75.79%	78.05%	77.60%	80.22%
Sarcasm	84.52%	84.81%	84.10%	85.14%

Mixup Strategy on Trimodal Dataset

		a a. a.		
Dataset	Modality	Single-CLS	Tri-CLS	
	RGB	78.84%	77.80%	
NVGesture	OF	79.25%	81.12%	
NVGesiure	Depth	82.78%	82.16%	
	Multi	85.89%	85.89%	
	Audio	58.27%	54.20%	
IEMOCAP	Video	32.07%	30.80%	
IEMOCAP	Text	71.91%	71.91%	
	Multi	78.95%	80.22%	

Sensitivity Analysis to α

Computation Cost of Two-Pass Forward

Method	Accuracy	Training time (second/epoch)
Naive MML	63.61%	55.08 ± 0.2729
MLA	79.43%	71.12 ± 0.7025
LFM	83.62%	60.14 ± 0.0920
IPRM	84.27%	57.03 ± 0.2138

Experiments

Robustness of the Pretrained Model

Method	Image	Text	Multiple		
CLIP	74.82%	82.15%	83.11%		
CLIP+MLA	77.45%	83.19%	84.45%		
CLIP+LFM	79.78%	<u>83.67%</u>	<u>85.42%</u>		
CLIP+IPRM	77.46%	85.43%	86.47%		

Conclusion

- We propose IPRM, a multimodal learning method with instantaneous probe-and-rebalance.
- GMM enables effortlessly adjustment the modality strength between different modalities.
- Two-Pass Forward strategy allows the model to learn under balanced status.
- Experiments show that IPRM achieves state-of-the-art performance on widely used datasets.

contact us