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» Multimodal Classification Leverage multimodal data to improve ‘

Background

. . one-hot label label free
comprehension and processing of complex tasks. e I What are the core causes of
- - = . UL, (4 /.2070 - - ?
> Different modalities converge at different speeds [Peng, et al, Wang, et 5 o] . modality imbalance
al], causing strong modalities to dominate while weak ones are ignored. 3 o -
o —— audio-only model o —— visual-only model < 24538 24 .64% > The key Cause Of mOdaIity
audio in audio-visual model visual in audio-visual model - - - H
050 —— audio in audio-visual model with OGM-GE plo —— visual in audio-visual model with OGM-GE 0.2 2_% Imbalance is the bias introduced

‘ during label fitting, where over-
. S Ls 0.7Ls +0.3Ly Ly

W . / T reliance on one-hot labels amplifies
| | differences in learning dynamics
Figure 1: The influence of labels fitting on perfor- liti
mance gaps (best view in color), where Lg and Ly between modalities.

» . 015 il denote the loss with one-hot labels and uniform
epoch labels (label free).
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Proposed Method

Unsupervised contrastive learning Dynamic integration
» Learn similar representations of different modalities » Gradually finds the optimal combination of modal
> Cross-modal similarity as a key learning signal, reducing alignment and classification accuracy.
reliance on one-hot labels. Lrotar = (1 — @)Les(8) + Ly (6)
| () ® OO e : : A
Loy (X) = __z[log( exp(s(x; - 3)/1) )+ log (X PE i 3)/@ > Heuristic: Focus on alignment first, then classification.
2ny & Y exp(s(x; ", x,.°)/T) Yy exp(s(x;”, x;7)/T) 1
a(t)=1—e t
Supervised multimodal learning > Learning-based: Find optimal classification within
» Focuses on optimizing the fit of class labels feasible regions across tasks
LY = ‘%Z S log5 D, Lars(87(@)) s.£.67(@) € argmin{(1 = @)Leus(60) + alam (6}
i=1

Experiments

Method KineticsSounds CREMA-D Sarcasm Twitter2015 NVGesture
ACC MAP ACC MAP ACC FI  ACC Fl  ACC Fl . 1
= KineticsSounds; —+- Sarcasm;  — ,(¢) =1 — e~ t;
Unimodal-1 ~ 54.12% 56.69% 63.17% 68.61% 81.36% 80.65% 73.67% 68.49% 78.22% 78.33% ’
Unimodal-2  55.62% 58.37% 45.83% 58.79% 71.81% 70.73% 58.63% 43.33% 78.63% 78.65% -o- CREMA-D;  -e- Twitter2015;
Unimodal-3 ~ — - - - - - - - 81.54% 81.83%
Concat 64.55% 71.31% 63.31% 68.41% 82.86% 82.43% 70.11% 63.86% 81.33% 81.47%
Affine 64.24% 69.31% 66.26% 71.93% 82.47% 81.88% 72.03% 59.92% 82.78% 82.81% 1
Channel ~ 63.51% 68.66% 66.13% 71.75% — - - —  81.54% 81.57%
ML-LSTM  63.84% 69.02% 62.94% 64.73% 82.05% 70.73% 70.68% 65.64% 83.20% 83.30% 0.9
Sum 64.97% T1.03% 63.44% 69.08% 82.94% 82.47% 73.12% 66.61% 82.99% 83.05%
Weight 6533% 71.33% 66.53% 73.26% 82.65% 82.19% 72.42% 65.16% 8342% 8357% 0.8
ETMC 65.67% 71.19% 65.86% 71.34% 83.69% 83.23% 73.96% 67.39% 83.61% 83.69% 0.7
MSES 64.71% 72.52% 61.56% 66.83% 84.18% 83.60% 71.84% 66.55% 81.12% 81.47% :
G-Blend  67.12% 71.39% 64.65% 68.54% 83.35% 82.71% 74.35% 68.69% 82.99% 83.05% 0.6
OGM 66.06% 71.44% 66.94% T1.73% 83.23% 82.66% 74.92% 68.74% — -
Greedy 66.52% 72.81% 66.64% 72.64% — - - —  8274% 82.69% g 0.5
DOMFEN  66.25% 72.44% 67.34% 73.72% 83.56% 82.62% 74.45% 68.57% — - 0.4
MSLR 65.91% 71.96% 65.46% 71.38% 84.23% 83.69% 72.52% 64.39% 82.86% 82.92% .
PMR 66.56% 71.93% 66.59% 70.36% 83.61% 82.49% 74.25% 68.62% — - 0.3
AGM 66.02% 72.52% 67.07% 73.58% 84.28% 83.44% 74.83% 69.11% 82.78% 82.82%
MLA 70.04% 74.13% 79.43% 85.72% 84.26% 83.48% 73.52% 67.13% 83.73% 83.87% 0.2 3
ReconBoost ~ 70.85% 74.24% 74.84% 81.24% 84.37% 83.17% 74.42% 68.34% 84.13% 86.32% :
MMPareto ~ 70.00% 78.50% 74.87% 75.15% 83.48% 82.84% 73.58% 67.29% 83.82% 84.24% 0.1 %Ki .
— 69.05% 72.97% 72.15% 80.45% 84.12% 83.98% 713.87% 69.17% 83.24% 83.87% 0 | ,~§
+0.15% +043%  £032% +0.85% +0.17% £022% +035% +0.26% £007% +0.18% # . 5
OusLp  1253% T838% 83.62% 90.06% 84.97% 84.57% 75.01% 70.57% 84.36% 84.68% 0 010203040506 070809 1 : dre oy - R
+031% £037% £011% £1.09% +£027% +018% £0.16% +028% +0.14% $024% #epoch/#total_epochs Ours-LB epoch = epoch = epoch = )
From the results, it reveals that: : :
> Our leaming-based strategy consistently » Focus first on alignment and then | Compared to CONCAT, our method better aligns features with
: on classification throughout the category labels by focusing on relevant modality details
outperforms baselines across datasets. gory y g y :

training process

Conclusion

This study identifies label fitting as a key cause of modality imbalance and proposes dynamically combining unsupervised yyang@njust.edu.cn

contrastive learning with supervised multimodal learning. I?;’xggé@é‘ﬁﬁ‘;fgg;’;n

Future work will explore whether some labels inherently favor specific modalities. yxu@dlut.edu.cn
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