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Background 

Use Multimodal data to enhance

understanding and processing of

complex tasks.

Multimodal Classification

Different modalities converge at different

speeds[2,3], causing strong modalities to

dominate while weak ones are ignored.

Modality Imbalance

[2] Peng, Xiaokang, et al. "Balanced multimodal learning via on-the-fly gradient modulation." CVPR. 2022.

[3] Wang, Weiyao, et al. “What makes training multi-modal classification networks hard? " CVPR. 2020.

(A) [1]

(B) [2]

(C) [3]

[1] Yang, Yang, et al. "Learning to Rebalance Multi-Modal Optimization by Adaptively Masking Subnetworks." arXiv. 2024.
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What are the core causes of modality imbalance?

Motivation

Tiny Experiment

◼ One-hot Labels

◼ Lable Free

◼ Lable Smoothing
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Appropriate intervention label fitting can alleviate the difference in the learning ability of different modalities
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How do we impose positive intervention?

◼ Learn similar representations for data pairs of different modalities

◼ Cross-modal similarity as a key learning signal, reducing reliance on one-hot labels.

Contrastive learning

Dynamic integration 

◼ Gradually finds the optimal combination of modal alignment and classification accuracy.

Motivation



6

Method

◆ Unsupervised contrast learning focuses on feature representation between aligned modalities

◆ Supervised multimodal learning focuses on optimizing the fit of class labels
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Integrating classification and modality matching losses gives the following objective function:

𝐿𝑇𝑜𝑡𝑎𝑙 = (1 − 𝜶)𝐿𝐶𝐿𝑆(𝜃) + 𝜶𝐿𝑀𝑀(𝜃)

Heuristic: Focus on alignment first, then classification.

𝛼(𝑡) = 1 − 𝑒−
1
𝑡

min
0≤𝛼≤1

𝐿𝐶𝐿𝑆(𝜃
∗(𝛼)) 𝑠. 𝑡. 𝜃∗(𝛼) ∈ argmin

𝜃
{(1 − 𝛼)𝐿𝐶𝐿𝑆(𝜃) + 𝛼𝐿𝑀𝑀(𝜃)}

Learning-based: Find optimal classification within feasible regions across tasks. 

To meet the model’s evolving needs, the importance of different objectives should adapt at each stage.

Method



8

Experiments 

◆ Our learning-based strategy consistently outperforms baselines across datasets.   

◆ Our method leads on VGGSound and excels with CLIP integration on Sarcasm and Twitter2015.
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◆ The learning-based strategy adapts 𝛼 effectively across datasets, with a polynomial approximation of heuristic 

adjustments further enhancing performance.

◆ Larger modality gaps in our method lead to more discriminative representations and higher accuracy.

◆ Compared to CONCAT, our method better aligns features with category labels by focusing on relevant modality details.

Experiments 
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Conclusion

◆This study identifies label fitting as a core cause of

modality imbalance in multimodal learning.

◆We propose a method that dynamically combines

unsupervised contrastive learning with supervised

multimodal learning to mitigate this imbalance.

◆Future work will explore whether certain category labels inherently favor specific

modalities to better address modality imbalance.
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