

Facilitating Multimodal Classification via Dynamically Learning Modality Gap

Yang Yang¹, Fengqiang Wan¹, Qingyuan Jiang^{1*}, Yi Xu²

¹Nanjing University of Science and Technology

²Dalian University of Technology

NeurIPS2024

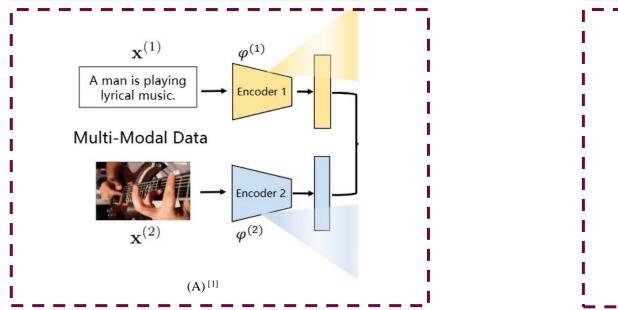
Code

Part 01 Background
Part 02 Method
Part 03 Experiments
Part 04 Conclusion

Background

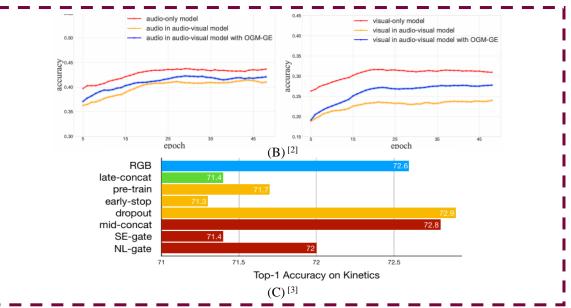
Multimodal Classification

Use Multimodal data to **enhance** understanding and processing of complex tasks.



Modality Imbalance

Different modalities converge at **different** speeds^[2,3], causing strong modalities to **dominate** while weak ones are ignored.

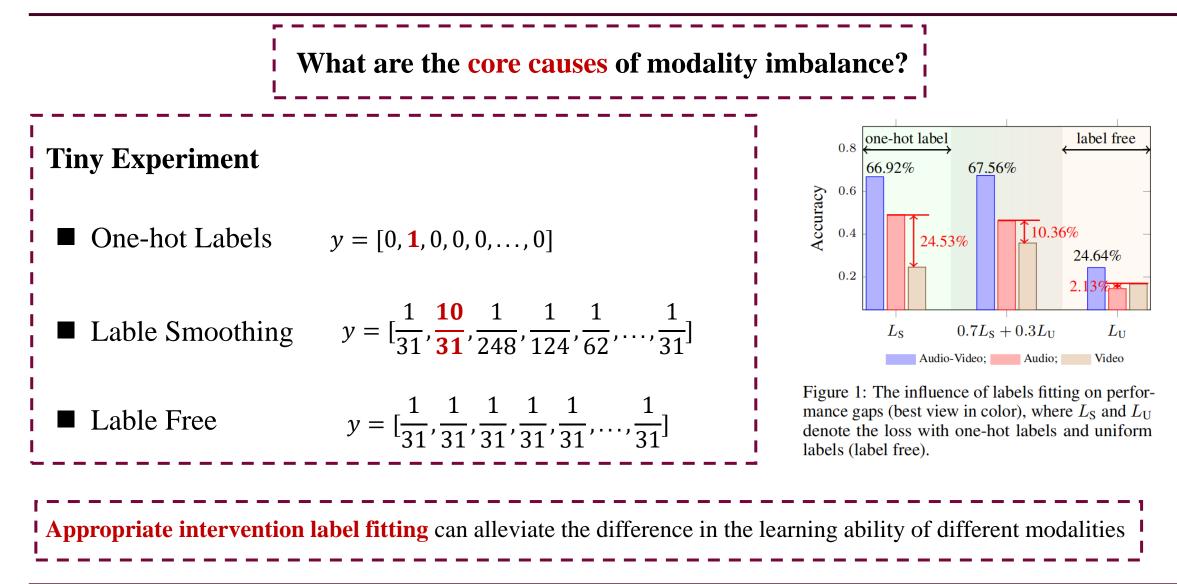


[1] Yang, Yang, et al. "Learning to Rebalance Multi-Modal Optimization by Adaptively Masking Subnetworks." arXiv. 2024.

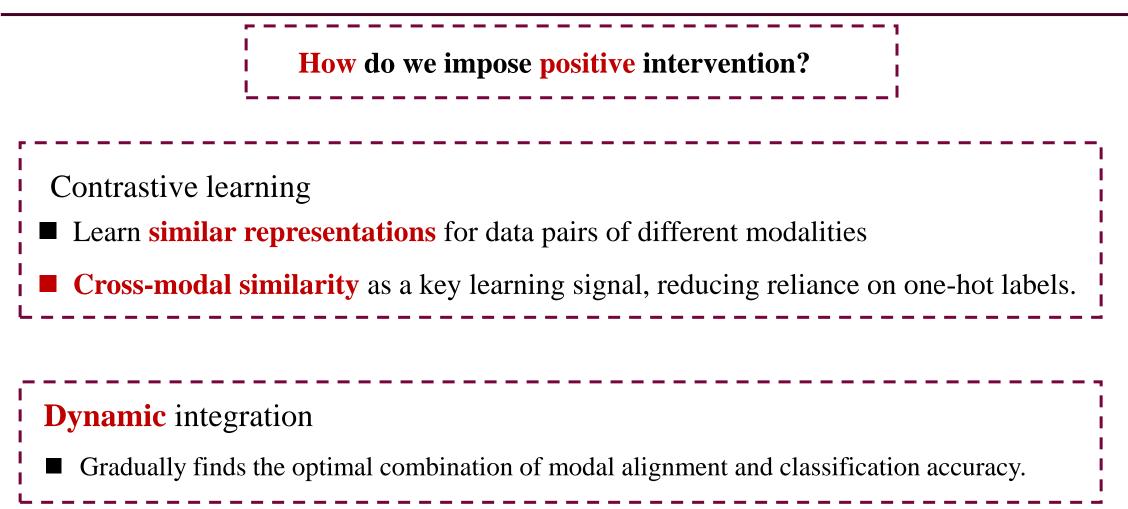
[2] Peng, Xiaokang, et al. "Balanced multimodal learning via on-the-fly gradient modulation." CVPR. 2022.

[3] Wang, Weiyao, et al. "What makes training multi-modal classification networks hard? " CVPR. 2020.

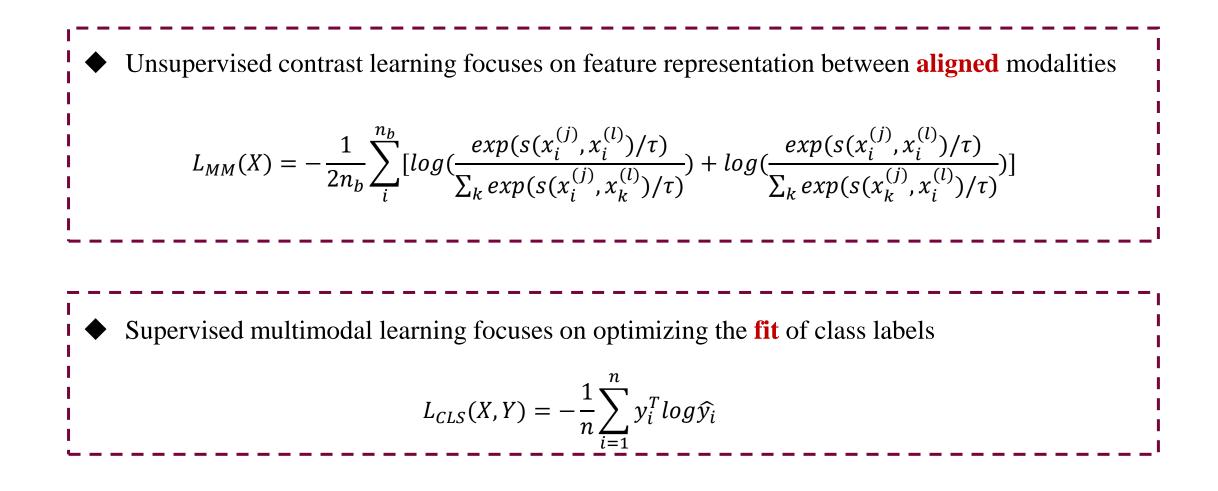
Motivation



Motivation



Method

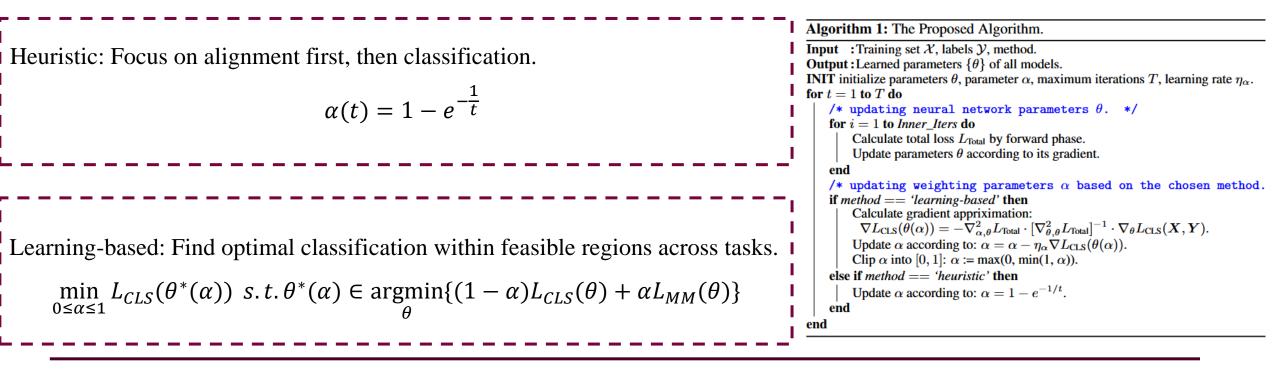


Method

Integrating classification and modality matching losses gives the following objective function:

 $L_{Total} = (1 - \alpha) L_{CLS}(\theta) + \alpha L_{MM}(\theta)$

To meet the model's evolving needs, the importance of different objectives should adapt at each stage.



Experiments

Table 1: Comparison with SOTA multimodal learning methods. The best results are highlighted in bold. The underlining symbol denotes the second best performance. The results with gray background are based on MML but perform worse than the best unimodal approach.

Method	KineticsSounds		CREMA-D		Sarcasm		Twitter2015		NVGesture	
memou	ACC	MAP	ACC	MAP	ACC	F1	ACC	F1	ACC	F1
Unimodal-1	54.12%	56.69%	63.17%	68.61%	81.36%	80.65%	73.67%	68.49%	78.22%	78.33%
Unimodal-2	55.62%	58.37%	45.83%	58.79%	71.81%	70.73%	58.63%	43.33%	78.63%	78.65%
Unimodal-3	_	-	-	-	_	-	_	_	81.54%	81.83%
Concat	64.55%	71.31%	63.31%	68.41%	82.86%	82.43%	70.11%	63.86%	81.33%	81.47%
Affine	64.24%	69.31%	66.26%	71.93%	82.47%	81.88%	72.03%	59.92%	82.78%	82.81%
Channel	63.51%	68.66%	66.13%	71.75%	_	-	-	-	81.54%	81.57%
ML-LSTM	63.84%	69.02%	62.94%	64.73%	82.05%	70.73%	70.68%	65.64%	83.20%	83.30%
Sum	64.97%	71.03%	63.44%	69.08%	82.94%	82.47%	73.12%	66.61%	82.99%	83.05%
Weight	65.33%	71.33%	66.53%	73.26%	82.65%	82.19%	72.42%	65.16%	83.42%	83.57%
ETMC	65.67%	71.19%	65.86%	71.34%	83.69%	83.23%	73.96%	67.39%	83.61%	83.69%
MSES	64.71%	72.52%	61.56%	66.83%	84.18%	83.60%	71.84%	66.55%	81.12%	81.47%
G-Blend	67.12%	71.39%	64.65%	68.54%	83.35%	82.71%	74.35%	68.69%	82.99%	83.05%
OGM	66.06%	71.44%	66.94%	71.73%	83.23%	82.66%	<u>74.92</u> %	68.74%	_	-
Greedy	66.52%	72.81%	66.64%	72.64%	_	_	_	_	82.74%	82.69%
DOMFN	66.25%	72.44%	67.34%	73.72%	83.56%	82.62%	74.45%	68.57%	-	-
MSLR	65.91%	71.96%	65.46%	71.38%	84.23%	83.69%	72.52%	64.39%	82.86%	82.92%
PMR	66.56%	71.93%	66.59%	70.36%	83.61%	82.49%	74.25%	68.62%	-	_
AGM	66.02%	72.52%	67.07%	73.58%	84.28%	83.44%	74.83%	69.11%	82.78%	82.82%
MLA	70.04%	74.13%	79.43%	85.72%	84.26%	83.48%	73.52%	67.13%	83.73%	83.87%
ReconBoost	<u>70.85%</u>	74.24%	74.84%	81.24%	<u>84.37%</u>	83.17%	74.42%	68.34%	84.13%	86.32%
MMPareto	70.00%	78.50%	74.87%	75.15%	83.48%	82.84%	73.58%	67.29%	83.82%	84.24%
Ours-H	69.05%	72.97%	72.15%	80.45%	84.12%	83.98%	73.87%	69.17%	83.24%	83.87%
Ours-II	$\pm 0.15\%$	$\pm 0.43\%$	$\pm 0.32\%$	$\pm 0.85\%$	$\pm 0.17\%$	$\pm 0.22\%$	$\pm 0.35\%$	$\pm 0.26\%$	$\pm 0.07\%$	$\pm 0.18\%$
Ours-LB	72.53%	78.38%	83.62%		84.97%			70.57%	84.36%	84.68%
Ours-LD	$\pm 0.31\%$	$\pm 0.37\%$	$\pm 0.11\%$	$\pm 1.09\%$	$\pm 0.27\%$	$\pm 0.18\%$	$\pm 0.16\%$	$\pm 0.28\%$	$\pm 0.14\%$	$\pm 0.24\%$

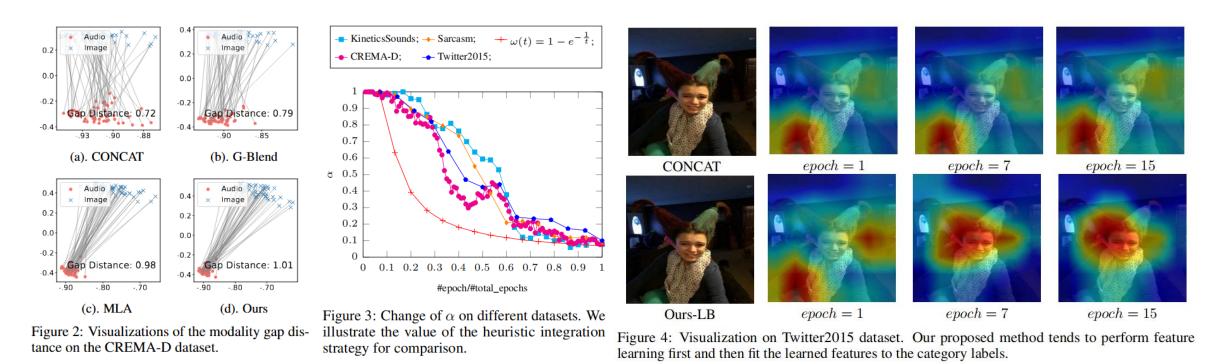
Method	ACC	MAP
AGM	47.11%	51.98%
MLA	51.65%	54.73%
ReconBoost	50.97%	53.87%
MMPareto	51.25%	54.74%
Ours-H	50.42%	53.62%
Ours-LB	52.74%	55.98%

Table 5: Results on the Sarcasm and Twitter2015 datasets achieved by using the CLIP pre-trained model as encoders.

Method	Sarcasm			Twitter2015			
	Image	Text	Multiple	Image	Text	Multiple	
CLIP	74.82%	82.15%	83.11%	54.48%	71.75%	72.52%	
CLIP+MLA	77.45%	83.19%	84.45%	56.53%	72.37%	73.95%	
CLIP+Ours	79.78%	83.67%	85.42%	64.67%	72.59%	74.43%	

- Our learning-based strategy consistently **outperforms** baselines across datasets.
- Our method leads on VGGSound and excels with CLIP integration on Sarcasm and Twitter2015.

Experiments



- The learning-based strategy adapts α effectively across datasets, with a polynomial approximation of heuristic adjustments further enhancing performance.
- Larger modality gaps in our method lead to **more discriminative representations** and higher accuracy.
- Compared to CONCAT, our method better aligns features with category labels by focusing on relevant modality details.

Conclusion

This study identifies label fitting as a core cause of modality imbalance in multimodal learning.

◆We propose a method that dynamically combines unsupervised contrastive learning with supervised multimodal learning to mitigate this imbalance.

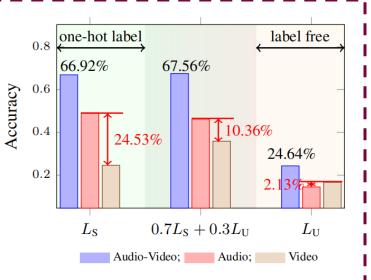


Figure 1: The influence of labels fitting on performance gaps (best view in color), where L_S and L_U denote the loss with one-hot labels and uniform labels (label free).

Future work will explore whether certain category labels inherently favor specific modalities to better address modality imbalance.

THANK YOU ! Q&A

NJUST-KMG