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Background

Multimodal Classification Modality Imbalance
Use Multimodal data to enhance Different modalities converge at different
understanding and processing of speedsl?3]  causing strong modalities to
complex tasks. dominate while weak ones are ignored.
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Motivation

Tiny Experiment
B One-hot Labels y =1[0,1,0,0,0,...,0]
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Figure 1: The influence of labels fitting on perfor-
mance gaps (best view in color), where Lg and Ly
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denote the loss with one-hot labels and uniform
labels (label free).




Motivation

Contrastive learning
B Learn similar representations for data pairs of different modalities

B Cross-modal similarity as a key learning signal, reducing reliance on one-hot labels.
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Dynamic integration

B Gradually finds the optimal combination of modal alignment and classification accuracy.




Method
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€ Supervised multimodal learning focuses on optimizing the fit of class labels

o .
Leps(X,Y) = —E § y; logy;
i=1




Method

Integrating classification and modality matching losses gives the following objective function:

Lrotar = (1 — a)L¢ps(0) + aLyp(6)

To meet the model’s evolving needs, the importance of different objectives should adapt at each stage.

Heuristic: Focus on alignment first, then classification.
1

a(t)=1—e ¢

Learning-based: Find optimal classification within feasible regions across tasks.

min Lo (0% (a)) s.t.0"(a) € arg;nin{(l — a)Lcs(0) + alyy(0)}

0<a<1

Algorithm 1: The Proposed Algorithm.

Input :Training set X', labels ), method.

Output : Learned parameters {6} of all models.

INIT initialize parameters @, parameter v, maximum iterations 7', learning rate 7j,,.
fort =1toT do

end

/#* updating neural network parameters f. */
for i = 1 to Inner_lters do

Calculate total loss Ly by forward phase.

Update parameters # according to its gradient.

end
/#* updating weighting parameters « based on the chosen method.
if method == ‘learning-based’ then

Calculate gradient appriximation:

VLcis(0(e)) = —=V2 o Lrow - [V3 0 Ltow] '+ VoLas(X,Y).

Update « according to: & = @ — 1oV Lers(6(a)).

Clip e into [0, 1]: e := max(0, min(1, cx)).
else if method == ‘heuristic’ then

| Update ex according to: ¢« =1 — e

end

1/t




Experiments

Table 1: Comparison with SOTA multimodal learning methods. The best results are highlighted in Table 2: Results on VGGSound dataset
bold. The underlining symbol denotes the second best performance. The results with gray background ’ '

are based on MML but perform worse than the best unimodal approach.

Method KineticsSounds CREMA-D Sarcasm Twitter2015 NVGesture Method ACC M AP
ACC MAP ACC MAP ACC FlI ACC FlI ACC Fl

Unimodal-1  54.12% 56.69% 63.17% 68.61% 81.36% 80.65% 73.67% 68.49% 7822% 78.33% AGM 47.11% 51.98%
Unimodal-2  55.62% 58.37% 45.83% 58.79% 71.81% 70.73% 58.63% 43.33% 78.63% 78.65%
Unimodal-3 - - - - - - - —  8154% 81.83% MLA  51.65% 54.73%

Concal  6455% 7131% 6331% 6841% 82.86% 8243% 70.11% 63.86% S133% 8147% ReconBoost 50.97%  53.87%

Affine 64.24% 69.31% 66.26% 71.93% 82.47% 81.88% 72.03% 59.92% 82.78% 82.81%

Channel  63.51% 68.66% 66.13% 71.75% — - - —  8154% 81.57% MMPareto  51.25%  54.74%
ML-LSTM  63.84% 69.02% 62.94% 64.73% 82.05% 70.73% 70.68% 65.64% 83.20% 83.30%

Sum 64.97% 71.03% 6344% 69.08% 82.94% 82.47% 73.12% 66.61% 8299% 83.05% Ours-H 50.42% 53.62%

Weight 65.33% 71.33% 66.53% 73.26% 82.65% 82.19% T72.42% 65.16% 8342% 83.57%

ETMC  65.67% 71.19% 65.86% 71.34% $3.69% $3.23% 73.96% 67.39% 83.61% $3.69% Ours-LB  52.74% 55.98 %

MSES 64.71% 72.52% 61.56% 66.83% 84.18% 83.60% 71.84% 66.55% 81.12% 81.47%

G-Blend  67.12% 71.39% 64.65% 68.54% 8$3.35% 82.71% 74.35% 68.69% 82.99% 83.05%

OGM 66.06% 71.44% 66.94% 71.73% 83.23% 82.66% T4.92% 68.74% — -

Greed 66.52% 72.81% 66.64% 72.64% — - _ —  8274% 82.69% . . . .
DOMFBII\I 66.25% T2.44% 67.34% T3.72% 83.56% 82.62% T445% 68.57% — _ Table 5: Results on the Sarcasm and Twitter2015 datasets achieved by using the CLIP pre-trained

MSLR 6591% 71.96% 6546% 71.38% 84.23% 83.69% 72.52% 64.39% 82.86% 82.92% model as encoders.

PMR 66.56% 71.93% 66.59% 70.36% 83.61% 82.49% 74.25% 68.62% — - — :

AGM 66.02% 72.52% 67.07% 73.58% 84.28% 83.44% 74.83% 69.11% 82.78% 82.82% Method Sarcasm Twitter2015

MLA 70.04% 74.13% 79.43% 85.72% 84.26% 83.48% 73.52% 67.13% 83.73% 83.87% Im: Toxt Multiol Im: Toxt Multiol
ReconBoost  70.85% 74.24% 74.84% 81.24% 84.37% $3.17% 74.42% 68.34% $4.13% 86.32% mage X ulliple mnage €X wupic
s iy v ik i v ol i v

. (] . (] . (] . (] . (] . (d . (] . (e} . (] . (o] 7 4

Ours-H +0.15% +0.43%  +032% +0.85% +0.17% +022% +035% +0.26% +007% +0.18% CLIP+MLA 77.45% 83.19% 84.45% 36.53% 72.37% 73.95%
OursLB 72.53% 7838% 83.62% 90.06% 84.97% 84.57% 75.01% 70.57% 84.36% 34.683% CLIP+Ours 79.78 % 83.67% 85.42% 64.67 % 72.599, 74.43%

+031% £037% £011% +*1.09% +027% +018% +0.16% +0.28% +£0.14% +0.24%

€ Our learning-based strategy consistently outperforms baselines across datasets.

€ Our method leads on VGGSound and excels with CLIP integration on Sarcasm and Twitter2015.




Experiments
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Figure 2: Visualizations of the modality gap dis- illustrate the value _of the heuristic integration Figure 4: Visualization on Twitter2015 dataset. Our proposed method tends to perform feature
tance on the CREMA-D dataset. strategy for comparison.

learning first and then fit the learned features to the category labels.

€ The learning-based strategy adapts a effectively across datasets, with a polynomial approximation of heuristic
adjustments further enhancing performance.

€ Larger modality gaps in our method lead to more discriminative representations and higher accuracy.

€ Compared to CONCAT, our method better aligns features with category labels by focusing on relevant modality details.




Conclusion

. . .- _ Figure 1: The influence of labels fitting on perfor-
multimodal learning to mitigate this imbalance. mance gaps (best view in color), where Ls and Ly
denote the loss with one-hot labels and uniform

labels (label free).
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