5996

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 12, DECEMBER 2018

Deep Discrete Supervised Hashing

Qing-Yuan Jiang, Xue Cui, and Wu-Jun Li™, Member, IEEE

Abstract— Hashing has been widely used for large-scale search
due to its low storage cost and fast query speed. By using super-
vised information, supervised hashing can significantly outper-
form unsupervised hashing. Recently, discrete supervised hashing
and feature learning based deep hashing are two representative
progresses in supervised hashing. On one hand, hashing is essen-
tially a discrete optimization problem. Hence, utilizing supervised
information to directly guide discrete (binary) coding procedure
can avoid sub-optimal solution and improve the accuracy. On the
other hand, feature learning based deep hashing, which integrates
deep feature learning and hash-code learning into an end-to-end
architecture, can enhance the feedback between feature learning
and hash-code learning. The key in discrete supervised hashing
is to adopt supervised information to directly guide the discrete
coding procedure in hashing. The key in deep hashing is to adopt
the supervised information to directly guide the deep feature
learning procedure. However, most deep supervised hashing
methods cannot use the supervised information to directly guide
both discrete (binary) coding procedure and deep feature learning
procedure in the same framework. In this paper, we propose
a novel deep hashing method, called deep discrete supervised
hashing (DDSH). DDSH is the first deep hashing method which
can utilize pairwise supervised information to directly guide both
discrete coding procedure and deep feature learning procedure
and thus enhance the feedback between these two important
procedures. Experiments on four real datasets show that DDSH
can outperform other state-of-the-art baselines, including both
discrete hashing and deep hashing baselines, for image retrieval.

Index Terms— Image retrieval, deep learning, deep supervised
hashing.

I. INTRODUCTION

UE to the explosive increasing of data in real applica-

tions, nearest neighbor (NN) [1] search plays a funda-
mental role in many areas including image retrieval, computer
vision, machine learning and data mining. In many real
applications, there is no need to return the exact nearest neigh-
bors for every given query and approximate nearest neigh-
bor (ANN) is enough to achieve satisfactory search (retrieval)
performance. Hence, ANN search has attracted much attention
in recent years [2]-[9].

Manuscript received July 31, 2017; revised April 5, 2018 and May 30,
2018; accepted July 17, 2018. Date of publication August 10, 2018; date of
current version September 4, 2018. This work was supported in part by the
NSFC under Grant 61472182, in part by the Key Research and Development
Program of Jiangsu under Grant BE2016121, and in part by a fund from
Tencent. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Gang Hua. (Corresponding author:
Wu-Jun Li.)

The authors are with the National Key Laboratory for Novel Software
Technology, Collaborative Innovation Center of Novel Software Technology
and Industrialization, Department of Computer Science and Technology, Nan-
jing University, Nanjing 210023, China (e-mail: jiangqy @lamda.nju.edu.cn;
cuix@lamda.nju.edu.cn; liwujun@nju.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2018.2864894

Over the last decades, hashing has become an active
sub-area of ANN search [5], [10], [11]. The goal of hashing
is to map the data points to binary codes with hash functions
which tries to preserve the similarity in the original space
of the data points. With the binary hash code representation,
the storage cost for the data points can be dramatically
reduced. Furthermore, hashing based ANN search is able to
achieve a constant or sub-linear time complexity [12]. Hence,
hashing has become a promising choice for efficient ANN
search in large-scale datasets because of its low storage cost
and fast query speed [2]-[4], [6], [12]-[18].

Existing hashing methods can be divided into two main cat-
egories: data-independent methods and data-dependent meth-
ods. Data-independent hashing methods usually adopt random
projections as hash functions to map the data points from
the original space into a Hamming space of binary codes.
That is to say, these methods do not use any training data
to learn hash functions and binary codes. Representative
data-independent hashing methods include locality-sensitive
hashing (LSH) [2], [19], kernelized locality-sensitive hash-
ing (KLSH) [14]. Typically, data-independent hashing methods
need long binary code to achieve satisfactory retrieval per-
formance. Data-dependent hashing methods, which are also
called learning to hash methods, try to learn the hash functions
from data. Recent works [12], [16], [20]-[25] have shown
that data-dependent methods can achieve comparable or even
better accuracy with shorter binary hash codes, compared with
data-independent methods. Therefore, data-dependent methods
have received more and more attention.

Existing data-dependent hashing methods can be further
divided into unsupervised hashing methods and supervised
hashing methods, based on whether supervised information
is used for learning or not. Unsupervised hashing methods
aim to preserve the metric (Euclidean neighbor) structure
among the training data. Representative unsupervised hashing
methods include spectral hashing (SH) [26], iterative quanti-
zation (ITQ) [20], isotropic hashing (IsoHash) [10], spherical
hashing (SPH) [16], inductive manifold hashing (IMH) [21],
anchor graph hashing (AGH) [27], discrete graph hash-
ing (DGH) [28], latent semantic minimal hashing (LSMH) [29]
and global hashing system (GHS) [30]. Due to the seman-
tic gap [31], unsupervised hashing methods usually can not
achieve satisfactory retrieval performance in real applications.
Unlike unsupervised hashing methods, supervised hashing
methods aim to embed the data points from the original space
into the Hamming space by utilizing supervised information
to facilitate hash function learning or hash-code learning.
Representative supervised hashing methods include seman-
tic hashing [32], self-taught hashing (STH) [3], supervised

1057-7149 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2499-4006

JIANG et al.: DEEP DISCRETE SUPERVISED HASHING

hashing with kernels (KSH) [12], latent factor hash-
ing (LFH) [33], fast supervised hashing (FastH) [23], super-
vised discrete hashing (SDH) [25], column sampling based
discrete supervised hashing (COSDISH) [34] and nonlinear
discrete hashing (NDH) [17]. By using supervised information
for learning, supervised hashing can significantly outperform
unsupervised hashing in real applications such as image
retrieval. Detailed surveys on learning to hash can be found
in [7]-[9].

Hashing is essentially a discrete optimization problem.
Because it is difficult to directly solve the discrete optimization
problem, early hashing methods [15], [20], [22] adopt relax-
ation strategies to solve a proximate continuous problem which
might result in a sub-optimal solution. Specifically, relaxation
based hashing methods utilize supervised information to guide
continuous hash code learning at the first stage. Then they
convert continuous hash code into binary code by using round-
ing technology at the second stage. Recently, several discrete
hashing methods, e.g., DGH [28], FastH [23], SDH [25] and
COSDISH [34], which try to directly learn the discrete binary
hash codes, have been proposed with promising performance.
In particular, several discrete supervised hashing methods,
including FastH [23], SDH [25], and COSDISH [34], have
shown better performance than traditional relaxation-based
continuous hashing methods. The key in discrete supervised
hashing is to adopt supervised information to directly guide
the discrete coding procedure, i.e., the discrete binary code
learning procedure.

Most existing supervised hashing methods, including those
introduced above and some deep hashing methods [17],
[32], [35], are based on hand-crafted features. One major
shortcoming for these methods is that they cannot perform
feature learning. That is, these hand-crafted features might
not be optimally compatible with the hash code learn-
ing procedure. Hence, besides the progress about discrete
hashing, there has appeared another progress in supervised
hashing, which is called feature learning based deep hash-
ing [11], [36]-[43]. Representative feature learning based
deep hashing methods includes convolutional neural net-
work hashing (CNNH) [36], network in network hash-
ing (NINH) [37], deep semantic ranking hashing (DSRH) [38],
deep similarity comparison hashing (DSCH) [11], deep
pairwise-supervised hashing (DPSH) [42], deep hashing net-
work (DHN) [41], deep supervised hashing (DSH) [40],
deep quantization network (DQN) [41] and deep supervised
discrete hashing (DSDH) [44]. Deep hashing adopts deep
learning [45], [46] for supervised hashing. In particular, most
deep hashing methods adopt deep feature learning to learn a
feature representation for hashing. Many deep hashing meth-
ods integrate deep feature representation learning and hashing
code learning into an end-to-end architecture. Under this archi-
tecture, feature learning procedure and hash-code learning pro-
cedure can give feedback to each other in learning procedure.
Many works [40], [42] have shown that using the supervised
information to directly guide the deep feature learning proce-
dure can achieve better performance than other strategies [36]
which do not use supervised information to directly guide
the deep feature learning procedure. Hence, the key in deep

5997

TABLE I
NOTATION
Notation Meaning
B boldface uppercase, matrix
b boldface lowercase, vector
By the (7, j)th element in matrix B
BT transpose of matrix B
[bll2 Euclidean norm of vector b
Q capital Greek letter, set of indices
° Hadamard product (i.e., element-wise product)
b2 element-wise square of vector, i.e., bZ=beb

hashing is to adopt the supervised information to directly guide
the deep feature learning procedure.

Both discrete supervised hashing and feature learning based
deep hashing have achieved promising performance in many
real applications. However, most deep supervised hashing
methods cannot use the supervised information to directly
guide both discrete (binary) coding procedure and deep feature
learning procedure in the same framework. In this paper,
we propose a novel deep hashing method, called deep discrete
supervised hashing (DDSH). The main contributions of DDSH
are outlined as follows:

o DDSH is the first deep hashing method which can utilize
pairwise supervised information to directly guide both
discrete coding procedure and deep feature learning pro-
cedure.

o By integrating the discrete coding procedure and deep
feature learning procedure into the same end-to-end
framework, these two important procedures can give
feedback to each other to make the hash codes and feature
representation more compatible.

« Experiments on four real datasets show that our proposed
DDSH can outperform other state-of-the-art baselines,
including both discrete hashing and deep hashing base-
lines.

The rest of this paper is organized as follows. In Section II,
we briefly introduce the notations and problem definition in
this paper. Then we describe DDSH in Section III. We discuss
the difference between DDSH and existing deep hashing
methods with pairwise labels in Section IV. In Section V,
we evaluate DDSH on four datasets by carrying out the Ham-
ming ranking task and hash lookup task. Finally, we conclude
the paper in Section VI.

II. NOTATION AND PROBLEM DEFINITION
A. Notation

Some representative notations we use in this paper are out-
lined in Table I. More specifically, we use boldface uppercase
letters like B to denote matrices. We use boldface lowercase
letters like b to denote vectors. The (i, j)th element in matrix
B is denoted as B;;. B is the transpose of B and b, is the
Euclidean norm of vector b. We use the capital Greek letter
like Q to denote the set of indices. We use the symbol e to
denote the Hadamard product (i.e., element-wise product). The
square of a vector (or a matrix) like b? indicates element-wise
square, i.e., b2 =beb.

5998

Fig. 1.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 12, DECEMBER 2018

Loss Part

Pariwise Loss

L

\4

Optimal Binary Code
Learning

The model architecture of DDSH. DDSH is an end-to-end deep learning framework which consists of two main components: loss part and

feature learning part. The loss part contains the discrete coding procedure (to learn the binary codes B9), and the feature learning part contains the deep
feature learning procedure (to learn the F(x; ®) for x indexed by I'). During each iteration, we adopt an alternating strategy to learn binary codes and feature
representation alternatively, both of which are directly guided by supervised information. Hence, DDSH can enhance the feedback between the discrete coding

procedure and the deep feature learning procedure.

B. Problem Definition

Although supervised information can also be triplet
labels [11], [37]-[39] or pointwise labels [25], in this paper we
only focus on the setting with pairwise labels [36], [40]-[43]
which is a popular setting in supervised hashing. The tech-
nique in this paper can also be adapted to settings with triplet
labels, which will be pursued in our future work.

We use X = {x;}_; to denote a set of training points.
In supervised hashing with pairwise labels, the supervised
information S = {—1,1}"*" between data points is also
available for training procedure, where S;; is defined as

follows:
15

Supervised hashing aims at learning a hash function to map
the data points from the original space into the binary code
space (or called Hamming space), with the semantic (super-
vised) similarity in S preserved in the binary code space.
We define the hash function as: h(x) € {—1,+1}° Vx € X,
where ¢ is the binary code length. The Hamming distance
between binary codes b; = h(x;) and b; = h(x;) is defined
as follows:

X; and x; are similar.

otherwise.

, 1
distys (b, b)) = > (c = b/b)).

To preserve the similarity between data points, the Hamming
distance between the binary codes b; = A(x;) and b; = h(x;)
should be relatively small if the data points x; and x; are
similar, i.e., S;; = 1. On the contrary, the Hamming distance
between the binary codes b; = h(x;) and b; = h(x;) should
be relatively large if the data points x; and X; are dissimilar,
i.e., S;j = —1. In other words, the goal of supervised hashing
is to solve the following problem:

n
Z L(h(xi), h(x;); Sij)
i,j=1

n
= > L(b;,bj; Sij), e))

i,j=1

mhln L(h) =

where L(-) is a loss function.

There have appeared various loss functions in supervised
hashing. For example, KSH [12] uses L, function, which is
defined as follows:

L mpm)2
L(bi,bj; Sij) = (Sij — E Zbi bj))
m=1
where b;” is the mth element in vector b;. Please note that our
DDSH is able to adopt many different kinds of loss functions.
In this paper, we only use Lj loss function as an example, and
leave other loss functions for further study in future work.

III. DEEP DISCRETE SUPERVISED HASHING

In this section, we describe the details of DDSH, including
the model architecture and learning algorithm.

A. Model Architecture

DDSH is an end-to-end deep hashing method which is able
to simultaneously perform feature learning and hash code
learning in the same framework. The model architecture of
DDSH is shown in Figure 1, which contains two important
components: loss part and feature learning part. The loss part
contains the discrete coding procedure which aims to learn
optimal binary code to preserve semantic pairwise similarity.
The feature learning part contains the deep feature learning
procedure which tries to learn a compatible deep neural net-
work to extract deep representation from scratch. For DDSH,
discrete coding procedure and deep feature learning are inte-
grated into an end-to-end framework. More importantly, both
procedures are directly guided by supervised information.

1) Loss Part: Inspired by COSDISH [34], we use
column-sampling method to split the whole training set into
two parts. More specifically, we randomly sample a subset €
of ® = {1,2,...,n} and generate I' = @ \ Q (|T'] > |Q)]).
Then we split the whole training set X into two subsets X
and X', where X and X' denote the training data points
indexed by Q and I" respectively.

Similarly, we sample |Q| columns of S with the correspond-
ing sampled columns indexed by Q. Then, we approximate the

JIANG et al.: DEEP DISCRETE SUPERVISED HASHING

original problem in (1) by only using the sampled columns of
S:

min £(i) = 3> LX), h(x)): Sij)

ieQ j=1

= Z Z L(h(x;), h(x;); Sij)

X; EXQ X EXF

+ z L(h(x;), h(x}); Sij)- ()

Xi, X EXQ

Then we introduce auxiliary variables to solve problem (2).
More specifically, we utilize auxiliary variables B® = {b;|i €
Q} with b; € {—1,+1} to replace part of the binary codes
generated by the hash function, i.e., #(X®). Here, h(X%?) =
{h(x;)|x; € X®}. Then we rewrite the problem (2) as follows:

. Qy _ .) Q..
Zr,ll;g L(h,B)—Z Z L(bhh(xj)vslj)

ieQ XjEXF

+ > L(b;,bj: Sij)
i,jEQ
st.b; e {—1,+1}°, VieQ 3)

The problem in (3) is the final loss function (objective) to
learn by DDSH. We can find that the whole training set is
divided into two subsets X** and X'. The binary codes of
X2, ie., BY, are directly learned from the objective function
in (3), but the binary codes of X! are generated by the hash
function h(-). h(-) is defined based on the output of the deep
feature learning part, which will be introduced in the following
subsection.

The learning of B contains the discrete coding procedure,
which is directly guided by the supervised information. The
learning of i (-) contains the deep feature learning procedure,
which is also directly guided by the supervised informa-
tion. Hence, our DDSH can utilize supervised information to
directly guide both discrete coding procedure and deep feature
learning procedure in the same end-to-end deep framework.
This is different from existing deep hashing methods which
either use relaxation strategy without discrete coding or do not
use the supervised information to directly guide the discrete
coding procedure.

Please note that “directly guided” in this paper means that
the supervised information is directly included in the corre-
sponding terms in the loss function. For example, the super-
vised information S;; is directly included in all terms about the
discrete codes B in (3), which means that the discrete coding
procedure is directly guided by the supervised information.
Furthermore, the supervised information §;; is also directly
included in the term about the deep feature learning function
h(x;) in (3), which means that the deep feature learning pro-
cedure is also directly guided by the supervised information.
To the best of our knowledge, DDSH is the first deep hashing
method which can utilize pairwise supervised information to
directly guide both discrete coding procedure and deep feature
learning procedure, and thus enhance the feedback between
these two important procedures.

5999

TABLE 11
CONFIGURATION OF THE CONVOLUTIONAL LAYERS IN DDSH

Laver Configuration

Y filter size | stride [pad [LRN [pool
convl 64x 11 x11 | 4x4 0 yes 2% 2
conv2 256 X 5 X 5 1x1 2 yes 2% 2
conv3 256 x 3 X 3 1x1 1 no -
conv4 256 x 3 X 3 1x1 1 no -
convS 256 x 3 X 3 1x1 1 no 2% 2

TABLE III

CONFIGURATION OF THE FULLY-CONNECTED LAYERS IN DDSH

[Layer [Configuration]
fullé 4096
full7 4096
full® hash code length ¢

2) Feature Learning Part: The binary codes of X' are
generated by the hash function /4 (-), which is defined based on
the output of the deep feature learning part. More specifically,
we define our hash function as: (x) = sign(F(x; ©)), where
sign(-) is the element-wise sign function. F(x; ®) denotes
the output of the feature learning part and ® denotes all
parameters of the deep neural network.

We adopt a convolutional neural network (CNN) from [47],
i.e., CNN-F, as our deep feature learning part. We replace
the last layer of CNN-F as one fully-connected layer to
project the output of the second last layer to R¢ space.
More specifically, the feature learning part contains 5 con-
volutional layers (“convl-conv5”) and 3 fully-connected lay-
ers (“full6-full8”). The detailed configuration of the 5 con-
volutional layers is shown in Table II. In Table II, “filter
size” denotes the number of convolutional filters and their
receptive field size. “stride” specifies the convolutional stride.
“pad” indicates the number of pixels to add to each size
of the input. “LRN” denotes whether Local Response Nor-
malization (LRN) [45] is applied or not. “pool” denotes
the down-sampling factor. The detailed configuration of the
3 fully-connected layers is shown in Table III, where the
“configuration” shows the number of nodes in each layer.

We adopt the Rectified Linear Unit (ReLU) [45] as activa-
tion function for all the first seven layers. For the last layer,
we utilize identity function as the activation function.

B. Learning

After randomly sampling Q at each iteration, we utilize an
alternating learning strategy to solve problem (3).

More specifically, each time we learn one of the variables
B and h(F(x; ©)) with the other fixed. When A (F (x; ©)) is
fixed, we directly learn the discrete hash code B over binary
variables. When B is fixed, we update the parameter ® of
the deep neural network.

1) Learn B® With h(F(x; ®)) Fixed: When h(F(x; ®)) is
fixed, it’s easy to transform problem (3) into a binary quadratic
programming (BQP) problem as that in TSH [22]. Each time
we optimize one bit for all points. Then, the optimization of

6000

the kth bit of all points in B is given by:
b
s.t. bX e {—1, 41} (4)

where b denotes the kth column of B, and

k—1
0%, = =2(cSF =D b
i#] m=1
Qﬁ' =0

IT'|

k-1
k rooor r
pi =22 Bi(eSi — D Bjb".
=1 m=1

Here, b;” denotes the mth bit of b; and pf.‘ denotes the ith
element of pF.

Following COSDISH, we can easily solve problem (4)
by transforming the BQP problem into an equally clustering
problem [48].

2) Learn h(F(x; ©)) With B® Fixed: Because the derivative
of the hash function h(x) = sign(F(x; ®)) is 0 everywhere
except at 0, we cannot use back-propagation (BP) methods to
update the neural network parameters. So we relax sign(-) as
h(x) = tanh(F (x; @)) inspired by Song et al. [24]. Then we
optimize the following problem:

min L(h) =Y D" L(bi, h(x)): S;j)
h iEQXjEXF

s.t. h(x;) = tanh(F (x;; ©)) (5)

To learn the CNN parameter ©®, we utilize a
back-propagation algorithm. That is, each time we sample a
mini-batch of data points, and then use BP algorithm based
on the sampled data.

We define the output of CNN as z; = F(x;; ®) and a; =
tanh(z;). Then we can compute the gradient of a; and z; as

follows:
oL _ z oL(b;, a;; Sij)
aaj ico 531'
= > 2@alb; — $;)b; (6)
ieQ
and
oL oL
— = e(l—2a)
8Zj 8aj J
= > 2@lb; — S;j)bi e (1 —a7) (7
ieQ
Then, we can use chain rule to compute % based on %
and ;37[:

We summarize the whole learning algorithm for DDSH in
Algorithm 1.

C. Out-of-Sample Extension for Unseen Data Points

After training our DDSH model, we can adopt the learned
deep hashing framework to predict the binary code for any
unseen data point during training.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 12, DECEMBER 2018

Algorithm 1 The Learning Algorithm for DDSH

Input:
Training set X;
Code length c;
Supervised information S.
Output:
Parameter O of the deep neural network.
Initialization
Initialize neural network parameter ©, mini-batch size M
and iteration number T, T5p,
Initialize B = {b;|i = 1,2,--- ,n}
for iter =1,2,...,T,,; do
Randomly sample Q and set I' = & \
Split training set X into X and XT.
Split B into B and B'.
for epoch =1,2,...,T;, do
for k=1,2,...,cdo
Construct the BQP problem for the kth bit using (4).
Construct the clustering problem to solve the BQP
problem for the kth bit.
end for
fort=1,2,...,|'|/M do
Randomly sample M data points from X! to con-
struct a mini-batch.
Calculate h(x;) for each data point x; in the mini-
batch by forward propagation.
Calculate the gradient according to (7).
Update the parameter © by using back propagation.
Update b; = sign(h(x;)) for each data point x; in
the mini-batch.
end for
end for
end for

More specifically, given any point X, ¢ X, we use the
following formula to predict its binary code:

b, = h(xy) = sign(F (x4; 9)),

where ® is the deep neural network parameter learned by
DDSH model.

IV. COMPARISON TO RELATED WORK

Existing feature learning based deep hashing methods with
pairwise labels either use relaxation strategy without discrete
coding or do not use the supervised information to directly
guide the discrete coding procedure. For example, CNNH [36]
is a two-step method which adopts relaxation strategy to learn
continuous code in the first stage and performs feature learning
in the second stage. The feature learning procedure in CNNH
is not directly guided by supervised information. NINH [37],
DHN [41] and DSH [40] adopt relaxation strategy to learn
continuous code. DPSH [42] and DQN [41] can learn binary
code in the training procedure. However, DSPH and DQN do
not utilize the supervised information to directly guide the

JIANG et al.: DEEP DISCRETE SUPERVISED HASHING

discrete coding procedure. The objective function of DPSH!
can be written as:

n
Lopsu = — D (S;j0i; —log(1 +¢®9)) + 7 > IIb; — w7,
Si; €S i=1

where Q;; = %uIT u; and u; denotes the output of the deep
neural network. We can find that in DPSH the discrete coding
procedure is not directly guided by supervised information,
i.e., the supervised information is not directly included in the
terms of {b;} in the objective function. The objective function
of DQN can be written as:

r,.
Z,Z;

n
2 2
A . — Chy |2,
i) 2 e~ Chily

i=1

LpoNn = Z (Sij —

S,’j eS

where z; denotes the output of the deep neural network and
>z — Ch,-||% denotes the product quantization loss.
The discrete coding procedure is only contained in the term
> llzi — Ch; ||%. We can find that in DQN the discrete cod-
ing procedure is not directly guided by supervised information
either.

There appears one deep hashing method called DSDH [44].
Unlike DDSH, DSDH utilizes pointwise supervised infor-
mation to guide the discrete coding procedure and utilize
pairwise similarity to guide feature learning procedure. Then
DSDH bridges discrete coding procedure and feature learning
procedure by using the method of auxiliary coordinates (MAC)
technique in AFFHash [49]. Due to the requirements of
pointwise labels and pairwise labels, the application scenarios
of DSDH might be limited.

To the best of our knowledge, our DDSH is the first
deep hashing method which can utilize pairwise supervised
information to directly guide both discrete coding procedure
and deep feature learning procedure in the same framework.

V. EXPERIMENT

We evaluate DDSH and other baselines on datasets from
image retrieval applications. The open source deep learning
library MatConvNet [50] is used to implement our model. All
experiments are performed on an NVIDIA K40 GPU server.

A. Experimental Setting

1) Datasets: We adopt four widely used image datasets
to evaluate our proposed method. They are CIFAR-10% [45],
SVHN?3 [51], NUS-WIDE* [52] and Clothing]lM> [53].

The CIFAR-10 dataset contains 60,000 images which are
manually labeled into 10 classes including “airplane”, “auto-
mobile”, “bird”, “cat”, “deer”, “dog”, “frog”, “horse”, “ship”
and “truck”. It’s a single-label dataset. The size of each image
is 3232 pixels. Two images are treated as similar if they share
the same label, i.e., they belong to the same class. Otherwise,
they are considered to be dissimilar.

For DPSH, supervised information S§;; is defined on {0, 1}.
2https://www.cs.toronto.edu/~ kriz/cifar.html
3http://uﬂdl.stanford.edu/housenumbers/
4http://lms.comp.nus.edu.sg/research/NUS—WIDE.htm
5https://github.com/Cysu/noisy_label

6001

The SVHN dataset consists of 73,257 digits for training,
26,032 digits for testing and 531,131 additional samples. It is
a real-world image dataset for recognizing digital numbers
in natural scene images. The images are categorized into
10 classes, each corresponding to a digital number. SVHN is
also a single-label dataset. Two images are treated as similar
if they share the same label. Otherwise, they are considered
to be dissimilar.

The NUS-WIDE dataset is a large-scale image dataset
which includes 269,648 images and the associated tags from
Flickr website. It’s a multi-label dataset where each image
might be annotated with multi labels. We select 186,577 data
points that belong to the 10 most frequent concepts from the
original dataset. Two images are treated as similar if they
share at least one label. Otherwise, they are considered to be
dissimilar.

The ClothinglM dataset is a relatively large-scale
dataset which contains 1,037,497 images which belong to
14 classes including “T-shirt”, “shirt”, “knitwear”, “chiffon”,
“sweater”, “hoodie”, “windbreaker”, “jacket”, “downcoat”,
“suit”, “shawl”, “dress”, “vest” and “underwear”. Clothing|M
dataset is a single-label dataset. Two images are treated as
similar if they share the same label, i.e., they belong to the
same class. Otherwise, they are considered to be dissimilar.

Table IV illustrates some example points from the above
four datasets.

For CIFAR-10 dataset, we randomly take
1,000 images (100 images per class) as query set and the
remaining images as retrieval set. Furthermore, we randomly
select 5,000 images (500 images per class) from retrieval
set as training set. For SVHN dataset, we randomly select
1,000 images (100 images per class) from testing set as
query set and utilize the whole training set as retrieval
set. We randomly select 5,000 images (500 images per
class) from retrieval set as training set. For NUS-WIDE
dataset, we randomly select 1,867 data points as query
set and the remaining data points as retrieval set.
We randomly select 5,000 data points from retrieval set
as training set. For ClothinglM dataset, after removing
the images whose links are invalid, we randomly select
7,000 images (500 images per class) as query set and
1,028,083 images as retrieval set. Furthermore, we randomly
sample 14,000 images (1,000 images per class) from retrieval
set to construct training set.

2) Baselines and Evaluation Protocol: We compare DDSH
with eleven state-of-the-art baselines, including LSH [19],
ITQ [20], LFH [33], FastH [23], SDH [25], COSDISH [34],
NDH [17], DHN [43], DSH [40], DPSH [42] and DSDH [44].
These baselines are briefly introduced as follows:

o Locality-sensitive hashing (LSH) [19]: LSH is a repre-
sentative data-independent hashing method. LSH utilizes
random projection to generate hash function.

o lterative quantization (ITQ) [20]: ITQ is a representative
unsupervised hashing method. ITQ first projects data
points into low space by utilizing principal component
analysis (PCA). Then ITQ minimizes the quantization
error to learn binary code.

6002

TABLE IV
EXAMPLE POINTS OF THE DATASETS

[Dataset | Example [Label
Qe
CIFAR-10 B~ “deer”.
Dk
272
sv | I
“9”.
“person”, “sky”.
NUS-WIDE “clouds”, “ocean”,
“person”, “sky”, “water”.
“road”, “clouds”,
“sky”, “buildings”.
“T-shirt”.
ClothingIM
“shawl”.

o Column

o Latent factor hashing (LFH) [33]: LFH is a supervised

hashing method which tries to learn binary code based
on latent factor models.

o Fast supervised hashing (FastH) [23]: FastH is supervised

hashing method. FastH directly adopts graph-cut method
to learn discrete binary code.

o Supervised discrete hashing (SDH) [25]: SDH is a point-

wise supervised hashing method which utilizes the dis-
crete cyclic coordinate descent (DCC) algorithm to learn
discrete hash code.

sampling based discrete supervised hash-
ing (COSDISH) [34]: COSDISH is a supervised hashing
method. COSDISH can directly learn discrete hash code.

o Nonlinear deep hashing (NDH) [17]: NDH is a deep

supervised hashing method. NDH utilizes both pointwise
label and pairwise similarity to guide binary coding and
hash-function learning. However, NDH is a hand-crafted
feature based method.

o Deep hashing network (DHN) [43]: DHN is a deep super-

vised hashing method. DHN minimizes both pairwise
cross-entropy loss and pairwise quantization loss.

o Deep supervised hashing (DSH) [40]: DSH is a deep

supervised hashing method. DSH takes pairs of points

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 12, DECEMBER 2018

as input and learns binary codes by maximizing the
discriminability of the corresponding binary codes.

o Deep pairwise-supervised hashing (DPSH) [42]: DPSH
is a deep supervised hashing method. DPSH performs
deep feature learning and hash-code learning simulta-
neously with pairwise labels by minimizing negative
log-likelihood of the observed pairwise labels.

o Deep supervised discrete hashing (DSDH) [44]: DSDH
is a deep supervised hashing method. Similar to NDH,
DSDH also utilizes both pointwise label and pairwise
similarity to learn binary codes and deep neural net-
work. Furthermore, DSDH adopts the method of auxiliary
coordinates (MAC) technique in AFFHash [49] to bridge
binary coding procedure and feature learning procedure.

Among all these baselines, LSH is a data-independent hash-
ing method. ITQ is an unsupervised hashing method. LFH,
FastH, COSDISH, and SDH are non-deep methods, which can-
not perform deep feature learning. LFH is a relaxation-based
method. FastH, COSDISH and SDH are discrete supervised
hashing methods. NDH is a hand-crafted feature based deep
supervised hashing method. DHN, DSH, and DPSH are deep
hashing methods with pairwise labels which can perform
feature learning and hash-code learning simultaneously. DSDH
is a deep supervised hashing method which utilizes both
pointwise label and pairwise similarity.

For fair comparison, all feature learning based deep hashing
methods, including deep baselines and our DDSH, adopt the
same pre-trained CNN-F model on ImageNet® for feature
learning. Because the CNN-F model is pre-trained with images
of size 224 x 224 pixels, we first resize all images to be
224 x 224 pixels for four datasets. Then the raw image
pixels are directly utilized as input for deep hashing methods.
We carefully implement DHN and DSH on MatConvNet.
We fix the mini-batch size to be 128 and tune the learning
rate from 107 to 1072 by using a cross-validation strategy.
Furthermore, we set weight decay as 5 x 10™* to avoid
overfitting. For DDSH, we set |Q| = 100, T,,; = 3 and
T;, = 50 for CIFAR-10, SVHN and NUS-WIDE datasets.
Because NUS-WIDE is a multi-label dataset, we reduce the
similarity weight for those training points with multi labels
when we train DDSH. For ClothinglM dataset, we set |Q| =
500, T,y = 10 and T;, = 15.

For other supervised hashing methods, including LFH, ITQ,
LFH, FastH, SDH, COSDISH and NDH, we use 4,096-dim
deep features extracted by the CNN-F model pre-trained
on ImageNet as input for fair comparison. Because SDH
is a kernel-based methods, we randomly sample 1,000 data
points as anchors to construct the kernel by following the
suggestion of Shen et al. [25] of SDH. For LFH, FastH and
COSDISH, we utilize boosted decision tree for out-of-sample
extension by following the setting of FastH. For NDH whose
source code is not available, we carefully re-implement its
algorithm by ourselves. Following the authors’ suggestion,
we use 200-dimension feature vector derived from PCA on
deep features for NDH.

6We download the CNN-F model pre-trained on
from http://www.vlfeat.org/matconvnet/pretrained/.

ImageNet

JIANG et al.: DEEP DISCRETE SUPERVISED HASHING

TABLE V

MAP OF THE HAMMING RANKING TASK ON CIFAR-10 DATASET.
THE BEST ACCURACY IS SHOWN IN BOLDFACE

CIFAR-T0
Method T2bits 24 bits 32 biis 48 biis
DDSH 07695 08289 08352 0.8194
DSDH 07442 07868 07991 08142
DPSH 0.6844 07225 07396 0.7460
DSH 0.6457 07492 07857 08113
DHN 06725 07107 07045 07135
NDH 03620 0.6404 06515 0.6772
COSDISH | 06085 06827 06959 07158
SDH 05200 06461 06577 0.6688
FastH 06202 06731 06870 0.7163
LFH 04009 06047 06571 0.6995
TQ 02580 02725 02834 0.2936
LSH 0.1468 0.1725 01798 0.1929

In our experiment, ground-truth neighbors are defined based
on whether two data points share at least one class label.
We carry out Hamming ranking task and hash lookup task to
evaluate DDSH and baselines. We report the Mean Average
Precision (MAP), top-k precision, precision-recall curve and
case study for Hamming ranking task. Specifically, given a
query X4, we can calculate its average precision (AP) through
the following equation:

1 N
AP(g) = &- > PEOLK),
k=1

where Ry is the number of the relevant samples, P (k) is the
precision at cut-off £ in the returned sample list and I (k) is
an indicator function which equals 1 if the kth returned sample
is a ground-truth neighbor of x,. Otherwise, I; (k) is 0. Given
QO queries, we can compute the MAP as follows:

0
1
MAP = — E AP .
0% ®q)

Because NUS-WIDE is relatively large, the MAP value on
NUS-WIDE is calculated based on the top 5000 returned
neighbors. The MAP values for other datasets are calculated
based on the whole retrieval set.

For hash lookup task, we report mean hash lookup success
rate (SR) within Hamming radius O, 1 and 2 [28]. When at
least one ground-truth neighbor is retrieved within a specific
Hamming radius, we call it a lookup success. The hash lookup
success rate (SR) can be calculated as follows:

g I(#retrieved ground-truth for query x, > 0)
sk=3 :

g=1
Here, I(-) is an indicator function, i.e., I(true) = 1 and
I(false) = 0. Q is the total number of query images.

B. Experimental Result

1) Hamming Ranking Task: Table V, Table VI, Table VII
and Table VIII reports the MAP result on CIFAR-10, SVHN,
NUS-WIDE and ClothinglM dataset, respectively. We can
easily find that our DDSH achieves the state-of-the-art retrieval

6003

TABLE VI

MAP OF THE HAMMING RANKING TASK ON SVHN DATASET.
THE BEST ACCURACY IS SHOWN IN BOLDFACE

SVAN
Method T2bits 24 bits 32 biis 48 bits
DDSH 05735 0.6744 07031 0.7184
DSDH 05121 05670 05866 05839
DPSH 03790 04216 04337 0.4557
DSH 03702 04802 05232 0.5828
DHN 03800 04096 04158 0.4302
NDH 02177 02710 02563 0.2803
COSDISH | 02381 02951 03196 03408
SDH 0.1509 0299 03202 03335
FastH 02516 02961 03177 0.3436
LFH 01933 02558 02839 0.3253
TQ 01708 0.1138 0.1149 0.1159
LSH 0.1074 0.1082 01093 0.1109

TABLE VII

MAP OF THE HAMMING RANKING TASK ON NUS-WIDE DATASET.
THE BEST ACCURACY IS SHOWN IN BOLDFACE

NUS-WIDE
Method T2bits 24 bits 32 biis 48 bits
DDSH 0911 08165 08217 0.8259
DSDH 0.7916 08059 0.8063 08180
DPSH 07882 08085 08167 0.8234
DSH 07622 07940 07968 0.8081
DHN 07900 08101 08092 0.8180
NDH 07015 07351 07447 0.7449
COSDISH | 07303 07643 07868 07993
SDH 07385 07616 07697 0.7720
FastH 07412 07830 07948 0.8085
LFH 07049 07594 07778 0.7936
TQ 05055 05057 05031 0.5054
LSH 03407 03506 03509 03706

TABLE VIII

MAP OF THE HAMMING RANKING TASK ON CLOTHING | M DATASET.
THE BEST ACCURACY IS SHOWN IN BOLDFACE

ClothingIM
Method T2 bits 24 bits 32 bits 48 bits
DDSH 02763 0.3667 0.3878 _ 0.4008
DSDH 0.2903 03285 03413 03475
DPSH 0.1950 02087 02162 02181
DSH 0.1730 0.1870 0.1912 0.2021
DHN 0.1909 02243 02120 0.2488
NDH 0.1857 02276 02338 0.2354
COSDISH | 0.1871 0.2358 02567 0.2756
SDH 0.1518 0.1865 0.1941 0.1973
FastH 0.1736 02066 02167 0.2440
LFH 0.1548 0.1591 02128 0.2579
ITQ 0.1150 0.1214 0.1228 0.1259
LSH 0.0834 00894 0.0014 0.0920

accuracy in most cases compared with all baselines, including
deep hashing methods, non-deep supervised hashing methods,
non-deep unsupervised hashing methods and data-independent
methods.

By comparing ITQ to LSH, we can find that the
data-dependent hashing methods can significantly outper-
form data-independent hashing methods. By comparing NDH,
COSDISH, SDH, FastH and LFH to ITQ, we can find
that supervised methods can outperform unsupervised meth-
ods because of the effect of using supervised information.

6004

@

Precision
o o
IS

Precision

o o
oo

)

—— DHN
0 0.2

0.4 06 0.8 1
Recall

() (b)

0.
Recall

—=—DDSH
3 |——DSDH
02| |——DPsH
—s—DSH

Precision
o o o
IS

——DPSH
02| |——DSH

—— DHN —~—DHN

0 0.2 0.4 06 0.8 1 0 02 0.4 0.6 08 1
Recall Recall

(e ()

Precision
o o o
IS
Precision

——DDSH
3 |——DSDH
02| |——DPsH
—s—DSH
—— DHN

0 0.2 0.4 0.6 0.8 1
Recall

®

Precision
o o o
Y

——DDSH —=—DDSH
——DSDH

——DPSH

3| |——DSDH \‘\&
02| |——DPsi
—DSH
— DHN

02 ||—=—DsH
— DHN

0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Recall Recall

(m) (n)

Fig. 2.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 12, DECEMBER 2018

—=—DDSH

Precision

0. o 0.2 0.4 0.6
Recall Recall

(© (d)

05| ——DDSH
—+—DSDH
—+ DPSH

Precision

0.3} |—=—DSH
— DHN

0 0.2 0.4 0.8 1 o 0.2 0.4

0.6 0.6
Recall Recall

(€3] ()

Precision

0.5} ——DDSH
—+—DSDH
——DPSH
0.3||—=—DsH
— DHN

0 0.2 0.4 0.6 0.8 1
Recall

&

Precision

0.5} ——DDSH
——DSDH
——DPSH
0.3||—=—DsH
——DHN

0 0.2 04 0.6 0.8 1
Recall

(0)

Performance of precision-recall curve on four datasets. The four sub-figures in each row are the precision-recall curves for 12 bits, 24 bits, 32 bits

and 48 bits, respectively. (a) 12 bits @CIFAR-10. (b) 12 bits @SVHN. (c) 12 bits @NUS-WIDE. (d) 12 bits @ClothinglM. (e) 24 bits @CIFAR-10.
(f) 24 bits @SVHN. (g) 24 bits @ NUS-WIDE. (h) 24 bits @ClothingIM. (i) 32 bits @CIFAR-10. (j) 32 bits @SVHN. (k) 32 bits @ NUS-WIDE. (1) 48 bits
@ClothingIM. (m) 48 bits @CIFAR-10. (n) 48 bits @SVHN. (0) 48 bits @NUS-WIDE. (p) 48 bits @ClothingI M.

By comparing NDH, COSDISH, SDH and FastH to LFH,
we can find that discrete supervised hashing can outper-
form relaxation-based continuous hashing, which means that
discrete coding procedure is able to learn more optimal
binary codes. By comparing feature learning based deep
hashing methods, i.e., DDSH, DSDH, DPSH, DHN and DSH,
to non-deep hashing methods, we can find that feature learning
based deep hashing can outperform non-deep hashing because
deep supervised hashing can perform deep feature learning
compared with non-deep hashing methods. This experimental
result demonstrates that deep supervised hashing is a more
compatible architecture for hashing learning.

The main difference between our proposed DDSH and other
discrete supervised hashing methods like COSDISH, SDH
and FastH is that our DDSH adopts supervised information

to directly guide deep feature learning procedure but other
discrete supervised hashing methods do not have deep feature
learning ability. The main difference between our DDSH and
other deep hashing methods is that DDSH adopts supervised
information to directly guide the discrete coding procedure but
other deep hashing methods do not have this property. Hence,
the experimental results successfully demonstrate the motiva-
tion of DDSH, i.e., utilizing supervised information to directly
guide both deep feature learning procedure and discrete coding
procedure can further improve retrieval performance in real
applications.

Furthermore, we select four best baselines, i.e., DSDH,
DPSH, DSH and DHN, to compare the precision-recall and
top-k precision results. We report the precision-recall curve
on all four datasets in Figure 2. We can see that the

JIANG et al.: DEEP DISCRETE SUPERVISED HASHING

6005

—=—DDSH

0.85 0.7
o5l
osf T
0.55
E .g 0.5 — -
@ @ ——
3 3 0.45 .
3 & g4f|=—posu
035 ——DSDH
—+—DPSH
0.3
——DSH
025 ——DHN
0.5 0.2
500 1000 1500 2000 500 1000 1500 2000
Returned samples Returned samples
(a) (b)
0.9 0.8
—
0.7
.
sf
< c
2 L
@ 7] ——
20 205 —
1 ——DDSH 2 ——DDSH
o o
0.7 t | —+—DSDH 0.4 | ——DSDH
——DPSH —+—DPSH
0.65}| o DSH 03| _o_DpsH
——DHN ——DHN
0.6 0.2
500 1000 1500 2000 500 1000 1500 2000
Returned samples Returned samples
(e ®
0.9 0.8
—
T
0.85 >><z O
.
0.8 0.6
< _ . [e —
S e * —— 8 T - —
@ — @ — M
2075 1 £os
2 ——DDSH o —=—DDSH
o o
0.7 | | ——DSDH 0.4 || ——DSDH
—+—DPSH —+—DPSH
065 = DSH 03} ——DSH
——DHN ——DHN
0.6 0.2
500 1000 1500 2000 500 1000 1500 2000
Returned samples Returned samples
1)
09 08g
0.85 0.7
08 06k
< c e S
2 2 T —— L
@ 7]
5 075 505
1 —o—DDSH 2 ——DDSH
o o
0.7 || ——DSDH 0.4 || ——DSDH
——DPSH ——DPSH
0.65 | o DSH 03| —s—DSH
——DHN ——DHN
0.6 0.2
500 1000 1500 2000 500 1000 1500 2000
Returned samples Returned samples
(m) (n)

§ — 5
] @
2075 0
14 —>—DDS o
2 DDSH 2
——DSDH
0.7 H| ——DPSH
—=—DSH
——DHN
0.65
500 1000 1500 2000 2 3
Returned samples Returned samples %10°
(© (d)
0.85 0.5
—_— o
0.8 0.4
0.35
s H
2 2 I
2075 2 03f
2 —=—DDSH 2
o 2025
—+—DSDH
0.7 - | ——DPSH 0.2
—=—DSH 0.15
——DHN
0.65 0.1
500 1000 1500 2000 2 3 5
Returned samples Returned samples %108
0.85 0.55
—=—DDSH
— . 05
S —m—
0.8
s 5
] @
2075 2
2 —=—DDSH 2
o a
—«—DSDH
0.7 | ——DPSH
—s—DSH
—~—DHN
0.65
500 1000 1500 2000 2 3
Returned samples Returned samples %10°
0.85 0.55
— 05 —s—DDSH
e — — .
e 0as —+—DSDH
0.8
0.4
c 5 X
-g .g 035\
5075 5 03
2 —=—DDSH e 0
o o
—+—DSDH 0.25
0.7 | ——DPSH 0.2
s 0.15
—~—DHN
0.65 0.1
500 1000 1500 2000 0 1 2 3 4 5
Returned samples Returned samples x10°
(0) (P

Fig. 3. Performance of top-k precision on four datasets. The four sub-figures in each row are the top-k precision curves for 12 bits, 24 bits, 32 bits and 48 bits,
respectively. (a) 12 bits @CIFAR-10. (b) 12 bits @SVHN. (c) 12 bits @ NUS-WIDE. (d) 12 bits @Clothing1M. (e) 24 bits @CIFAR-10. (f) 24 bits @SVHN.
(g) 24 bits @NUS-WIDE. (h) 24 bits @ClothingIM. (i) 32 bits @CIFAR-10. (j) 32 bits @SVHN. (k) 32 bits @NUS-WIDE. (1) 32 bits @Clothing] M.
(m) 48 bits @CIFAR-10. (n) 48 bits @SVHN. (0) 48 bits @NUS-WIDE. (p) 48 bits @ClothingIM.

proposed DDSH still achieves the best performance in terms
of precision-recall curve in most cases.

In real applications, we might care about top-k retrieval
results more than the whole database. Hence we report the
top-k precision on four datasets based on the returned top-k
samples. In Figure 3, we show the top-k precision for dif-
ferent k on CIFAR-10 dataset, SVHN dataset, NUS-WIDE
and ClothingIM dataset respectively, where k is the number
of returned samples. Again, we can find that DDSH can
outperform other deep hashing methods in most cases.

2) Hash Lookup Task: In practice, retrieval with hash
lookup can usually achieve constant or sub-linear search speed
in real applications. Recent works like DGH [28] show that
discrete hashing can significantly improve hash lookup success
rate.

In Figure 4, we present the mean hash lookup success rate
within Hamming radius 0, 1 and 2 on all four datasets for all
deep hashing methods. We can find that DDSH can achieve the
best mean hash lookup success rate on four datasets, especially
for long codes.

3) Further Analysis: To further demonstrate the effective-
ness of utilizing supervised information to directly guide
both discrete coding procedure and deep feature learning
procedure in the same end-to-end framework, we evaluate
several variants of DDSH. These variants include “DDSHO0”,
“COSDISH-Linear”, “COSDISH-CNN” and “DDSH-MAC”.

DDSHO denotes the variant in which we fix the parame-
ters of the first seven layers of CNN-F in DDSH during
training procedure. In other words, DDSHO can not perform
deep feature learning procedure, and all the other parts are

6006

e 2o
>

Precision
Precision
o

0.2 S T~

12 24 32 48
Returned samples

(b)

e 2

Precision
Precision

32 12 24 32 48
Returned samples

(e) ®

ion
o
@

Precisi

°

2

Precision
e o

0.65
06
0.55
0.5 0.1

12 24 32 48 12 24 32 48
Returned samples Returned samples

®)

——DHN

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 12, DECEMBER 2018

e o
e o

Precision
Precision

12 24 32 48 12 24 32 48
Returned samples Returned samples

(© ()

e o

Precision

T2 24 32 48 12 24 32 48
Returned samples Returned samples

® (b

Precision

—=—DDSH
—«—DSDH
—+—DPSH
—=—DSH
— DHN

——DHN

12 24 32 48 T2 24 32 48
Returned samples Returned samples

k))

Fig. 4. Hash lookup success rate. Each row includes four sub-figures and presents the hash lookup success rate results on CIFAR-10, SVHN, NUS-WIDE
and Clothingl M datasets, respectively. (a) Radius 0 @CIFAR-10. (b) Radius 0 @SVHN. (c) Radius 0 @ NUS-WIDE. (d) Radius 0 @Clothing]lM. (e) Radius
1 @CIFAR-10. (f) Radius 1 @SVHN. (g) Radius 1 @NUS-WIDE. (h) Radius 1 @ClothingIM. (i) Radius 2 @CIFAR-10. (j) Radius 2 @SVHN. (k) Radius

2 @NUS-WIDE. (1) Radius 2 @Clothing] M.

exactly the same as those in DDSH. Comparison between
DDSHO and DDSH is to show the importance of deep feature
learning.

COSDISH-Linear denotes a variant of COSDISH in which
we use linear function rather than boosted decision tree for
out-of-sample extension. COSDISH-CNN denotes a variant
of COSDISH in which we learn optimal binary codes using
COSDISH first, and then we use the CNN-F to approximate
the binary codes for out-of-sample extension. Because the
discrete coding procedure in DDSH is similar to that in
COSDISH, COSDISH-CNN can be considered as a two-stage
variant of DDSH where the discrete coding stage is indepen-
dent of the feature learning stage. The comparison between
COSDISH-CNN and DDSH is to show that integrating the
discrete coding procedure and deep feature learning procedure
into the same framework is important.

DDSH-MAC is a variant of DDSH by using the method
of auxiliary coordinates (MAC) technique in AFFHash [49].
That is to say, we use loss function Lcospisa(B', B?) +
A|IB—tanh(F (X; ©®)) II% to enhance the feedback between deep
feature learning and discrete code learning. Here, Lcospisu(+)
is the loss used in COSDISH. DDSH-MAC can integrate the
discrete coding procedure and deep feature learning procedure
into the same framework. However, the supervised informa-
tion S;; isn’t directly included in the deep feature learning

10
15 X ‘ ‘ ‘ ‘ ‘
10 L
51
0 L . .
-1.5 -1 -0.5 0 0.5 1 1.5
Fig. 5. The effect of tanh(-) approximation on CIFAR-10.

term ||B — tanh(F (X; G)))||%: in DDSH-MAC. That is to say,
the supervised information is not directly used to guide the
deep feature learning procedure.

The experimental results are shown in Table IX. By compar-
ing DDSH to its variants including DDSHO, COSDISH-Linear,
COSDISH-CNN and DDSH-MAC, we can find that DDSH
can significantly outperform all the other variants. It means
that utilizing supervised information to directly guide both
discrete coding procedure and deep feature learning procedure

JIANG et al.: DEEP DISCRETE SUPERVISED HASHING 6007

N 2

= s . e
of P VS IWE

-~ v A 0 - o - o - W

Fig. 6. Case study on CIFAR-10 with 32 bits. The first column for each sub-figure is queries and the following twenty columns denote the top-20
returned results. We use red box to denote the wrongly returned results. (a) DDSH @32 bits. (b) DSDH @32 bits. (c) DSH @32 bits. (d) DPSH @32 bits.
(e) DHN @32 bits.

6008

TABLE IX

MAP COMPARISON AMONG VARIANTS OF DDSH oN CIFAR-10.
THE BEST ACCURACY IS SHOWN IN BOLDFACE

CIFAR-T0
Method T2bits 24 bits 32 bits 48 bits
DDSH 07695 08289 08352 08194
DDSHO 05793 0.6387 06536 0.6800
COSDISH-Linear | 02123 02345 02578 02723
COSDISH-CNN | 03742 04773 04678 05153
DDSH-MAC 04121 05060 05276 0.5335

in the same end-to-end framework is the key to make DDSH
achieve state-of-the-art retrieval performance.

Furthermore, to evaluate the approximation we used when
we update the parameter of deep neural network, we report the
distribution of the output for the deep neural network. Figure 5
shows the distribution of the output of tanh(F (X; ©®)) when we
finish the training procedure of DDSH on CIFAR-10 dataset.
The x-axis is the tanh(F (X; ©)), and the y-axis is the number
of points having the corresponding tanh(F(-)) value. It’s easy
to see that the tanh(-) can successfully approximate the sign(-)
function in real applications.

4) Case Study: We randomly sample some queries and
return top-20 results for each query as a case study on
CIFAR-10 to show the retrieval result intuitively. More specif-
ically, for each given query image, we return top-20 nearest
neighbors based on its Hamming distance away from query.
Then we use red box to indicate the returned results that are not
a ground-truth neighbor for the corresponding query image.

The result is shown in Figure 6. In each sub-figure, the first
column is queries, including an airplane, a bird, two cats and
a ship, and the following twenty columns denote the top-20
returned results. We utilize red box to denote the wrongly
returned results. It’s easy to find that DDSH can achieve better
retrieval performance than other deep hashing baselines.

VI. CONCLUSION

In this paper, we propose a novel deep hashing method
called deep discrete supervised hashing (DDSH) with appli-
cation for image retrieval. On one hand, DDSH adopts a
deep neural network to perform deep feature learning from
pixels. On the other hand, DDSH also adopts a discrete coding
procedure to perform discrete hash code learning. Moreover,
DDSH integrates deep feature learning procedure and discrete
coding procedure into the same architecture. DDSH is the first
deep supervised hashing method which can utilize pairwise
supervised information to directly guide both discrete coding
procedure and deep feature learning procedure in the same
end-to-end framework. Experiments on image retrieval appli-
cations show that DDSH can significantly outperform other
baselines to achieve the state-of-the-art performance.

REFERENCES

[1] A. Andoni, “Nearest neighbor search in high-dimensional spaces,” in
Proc. Int. Symp. Math. Found. Comput. Sci., 2011, pp. 1-33.

[2] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” in Proc. IEEE Symp. Found.
Comput. Sci., Oct. 2006, pp. 459-468.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 12, DECEMBER 2018

D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast
similarity search,” in Proc. ACM SIGIR Conf. Res. Develop. Inf. Retr.,
2010, pp. 18-25.

K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-preserving
quantization method for learning binary compact codes,” in Proc. [EEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 2938-2945.

F. Shen, X. Zhou, Y. Yang, J. Song, H. T. Shen, and D. Tao, “A fast
optimization method for general binary code learning,” IEEE Trans.
Image Process., vol. 25, no. 12, pp. 5610-5621, 2016.

H. Zhang, F. Shen, W. Liu, X. He, H. Luan, and T.-S. Chua, “Discrete
collaborative filtering,” in Proc. ACM SIGIR Conf. Res. Develop. Inf.
Retr., 2016, pp. 325-334.

J. Wang, H. T. Shen, J. Song, and J. Ji. (Aug. 2014). “Hashing
for similarity search: A survey.” [Online]. Available: https:/arxiv.org/
abs/1408.2927

J. Wang, W. Liu, S. Kumar, and S.-F. Chang, “Learning to hash for
indexing big data—A survey,” Proc. IEEE, vol. 104, no. 1, pp. 34-57,
Jan. 2016.

J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen, “A survey on
learning to hash,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4,
pp- 769-790, Apr. 2018.

W. Kong and W.-J. Li, “Isotropic hashing,” in Proc. Annu. Conf. Neural
Inf. Process. Syst., 2012, pp. 1655-1663.

R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang, “Bit-scalable
deep hashing with regularized similarity learning for image retrieval and
person re-identification,” IEEE Trans. Image Process., vol. 24, no. 12,
pp. 47664779, Dec. 2015.

W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised hash-
ing with kernels,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2012, pp. 2074-2081.

A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proc. Int. Conf. Very Large Data Bases,
1999, pp. 518-529.

B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for
scalable image search,” in Proc. Int. Conf. Comput. Vis., Sep./Oct. 2009,
pp. 2130-2137.

J. Wang, O. Kumar, and S.-F. Chang, “Semi-supervised hashing for
scalable image retrieval,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2010, pp. 3424-3431.

J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon, “Spherical
hashing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012,
pp. 2957-2964.

D. Ma, J. Liang, R. He, and X. Kong, “Nonlinear discrete cross-modal
hashing for visual-textual data,” in Proc. IEEE MultiMedia, vol. 24,
no. 2, Apr. 2017, pp. 56-65.

Y. Guo, G. Ding, L. Liu, J. Han, and L. Shao, “Learning to hash with
optimized anchor embedding for scalable retrieval,” IEEE Trans. Image
Process., vol. 26, no. 3, pp. 1344-1354, Mar. 2017.

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. 20th ACM
Symp. Comput. Geometry, 2004, pp. 253-262.

Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean
approach to learning binary codes,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2011, pp. 817-824.

F. Shen, C. Shen, Q. Shi, A. van den Hengel, and Z. Tang, “Inductive
hashing on manifolds,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2013, pp. 1562-1569.

G. Lin, C. Shen, D. Suter, and A. van den Hengel, “A general two-step
approach to learning-based hashing,” in Proc. Int. Conf. Comput. Vis.,
2013, pp. 2552-2559.

G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter, “Fast
supervised hashing with decision trees for high-dimensional data,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 1963-1970.

D. Song, W. Liu, R. Ji, D. A. Meyer, and J. R. Smith, “Top rank
supervised binary coding for visual search,” in Proc. Int. Conf. Comput.
Vis., 2015, pp. 1922-1930.

F. Shen, C. Shen, W. Liu, and H. T. Shen, “Supervised discrete
hashing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 37-45.

Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. Annu.
Conf. Neural Inf. Process. Syst., 2008, pp. 1753-1760.

W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,” in
Proc. Int. Conf. Mach. Learn., 2011, pp. 1-8.

W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,”
in Proc. Annu. Conf. Neural Inf. Process. Syst., 2014, pp. 3419-3427.

JIANG et al.: DEEP DISCRETE SUPERVISED HASHING

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

X. Lu, X. Zheng, and X. Li, “Latent semantic minimal hashing
for image retrieval,” IEEE Trans. Image Process., vol. 26, no. 1,
pp. 355-368, Jan. 2017.

D. Tian and D. Tao, “Global hashing system for fast image search,”
IEEE Trans. Image Process., vol. 26, no. 1, pp. 79-89, Jan. 2017.

A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain,
“Content-based image retrieval at the end of the early years,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 12, pp. 1349-1380,
Dec. 2000.

R. Salakhutdinov and G. Hinton, “Semantic hashing,” Int. J. Approx.
Reasoning, vol. 50, no. 7, pp. 969-978, Jul. 2009.

P. Zhang, W. Zhang, W.-J. Li, and M. Guo, “Supervised hashing with
latent factor models,” in Proc. ACM SIGIR Conf. Res. Develop. Inf. Retr.,
2014, pp. 173-182.

W.-C. Kang, W.-J. Li, and Z.-H. Zhou, “Column sampling based
discrete supervised hashing,” in Proc. AAAI Conf. Artif. Intell., 2016,
pp. 1230-1236.

V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing
for compact binary codes learning,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2015, pp. 2475-2483.

R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised hashing for
image retrieval via image representation learning,” in Proc. AAAI Conf.
Artif. Intell., 2014, pp. 2156-2162.

H. Lai, Y. Pan, Y. Liu, and S. Yan, “Simultaneous feature learning and
hash coding with deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2015, pp. 3270-3278.

F. Zhao, Y. Huang, L. Wang, and T. Tan, “Deep semantic ranking based
hashing for multi-label image retrieval,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2015, pp. 1556-1564.

B. Zhuang, G. Lin, C. Shen, and I. D. Reid, “Fast training of triplet-
based deep binary embedding networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2016, pp. 5955-5964.

H. Liu, R. Wang, S. Shan, and X. Chen, “Deep supervised hashing for
fast image retrieval,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 2064-2072.

Y. Cao, M. Long, J. Wang, H. Zhu, and Q. Wen, “Deep quantization
network for efficient image retrieval,” in Proc. AAAI Conf. Artif. Intell.,
2016, pp. 3457-3463.

W.-J. Li, S. Wang, and W.-C. Kang, “Feature learning based deep
supervised hashing with pairwise labels,” in Proc. Int. Joint Conf. Artif.
Intell., 2016, pp. 1711-1717.

H. Zhu, M. Long, J. Wang, and Y. Cao, “Deep hashing network for
efficient similarity retrieval,” in Proc. AAAI Conf. Artif. Intell., 2016,
pp. 2415-2421.

Q. Li, Z. Sun, R. He, and T. Tan, “Deep supervised discrete hashing,”
in Proc. Annu. Conf. Neural Inf. Process. Syst., 2017, pp. 2479-2488.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Annu. Conf. Neural
Inf. Process. Syst., 2012, pp. 1106-1114.

Y. LeCun et al., “Handwritten digit recognition with a back-propagation
network,” in Proc. Annu. Conf. Neural Inf. Process. Syst., 1989,
pp- 396-404.

K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of
the devil in the details: Delving deep into convolutional nets,” in Proc.
Brit. Mach. Vis. Conf., 2014, pp. 1-28.

R. Yang, “New results on some quadratic programming problems,”
Ph.D. dissertation, Dept. Ind. Enterprise Syst. Eng., Univ. Illinois
Urbana—Champaign, Champaign, IL, USA, 2013.

R. Raziperchikolaei and M. A. Carreira-Perpifian. (Jan. 2015). “Optimiz-
ing affinity-based binary hashing using auxiliary coordinates.” [Online].
Available: https://arxiv.org/abs/1501.05352

[50]

[51]

[52]

[53]

6009

A. Vedaldi and K. Lenc, “MatConvNet: Convolutional neural networks
for MATLAB,” in Proc. Annu. ACM Conf. Multimedia Conf., 2015,
pp. 689-692.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in
Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn., 2011,
p- 5.

T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “NUS-
WIDE: A real-world Web image database from National University of
Singapore,” in Proc. ACM Int. Conf. Image Video Retr., 2009, Art. no. 48.
T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang, “Learning from
massive noisy labeled data for image classification,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2015, pp. 2691-2699.

Qing-Yuan Jiang received the B.Sc. degree in
computer science from Nanjing University, China,
in 2014, where he is currently pursuing the Ph.D.
degree with the Department of Computer Sci-
ence and Technology. His research interests are in
machine learning and learning to hash.

Xue Cui received the B.Sc. degree in computer
science and technology from Chongqing University,
China, and the M.Eng. degree in computer sci-
ence from Nanjing University, China. Her research
interests mainly include machine learning and data
mining.

Wu-Jun Li (M’09) received the B.Sc. and M.Eng.
degrees in computer science from Nanjing Uni-
versity, China, and the Ph.D. degree in computer
science from The Hong Kong University of Science
and Technology. He started his academic career
as an Assistant Professor with the Department of
Computer Science and Engineering, Shanghai Jiao
Tong University. He then joined Nanjing University,
where he is currently an Associate Professor with the
Department of Computer Science and Technology.
His research interests are in machine learning, big
data, and artificial intelligence.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

