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Abstract—Due to its storage and retrieval efficiency,
cross-modal hashing (CMH) has been widely used for
cross-modal similarity search in many multimedia applications.
According to the training strategy, existing CMH methods can be
mainly divided into two categories: relaxation-based continuous
methods and discrete methods. In general, the training of
relaxation-based continuous methods is faster than discrete meth-
ods, but the accuracy of relaxation-based continuous methods is
not satisfactory. On the contrary, the accuracy of discrete meth-
ods is typically better than relaxation-based continuous methods,
but the training of discrete methods is very time-consuming. In
this paper, we propose a novel CMH method, called discrete
latent factor model based cross-modal hashing (DLFH), for cross
modal similarity search. DLFH is a discrete method which can
directly learn the binary hash codes for CMH. At the same
time, the training of DLFH is efficient. Experiments show that
DLFH can achieve significantly better accuracy than existing
methods, and the training time of DLFH is comparable to that
of relaxation-based continuous methods which are much faster
than existing discrete methods.

Index Terms—Approximate nearest neighbor, cross-modal re-
trieval, hashing, multimedia.

I. INTRODUCTION

NEAREST neighbor (NN) search plays a fundamental role
in many areas including machine learning, information

retrieval, computer vision and so on. In many real applications,
there is no need to return exact nearest neighbors for every
given query and approximate nearest neighbor (ANN) is
enough to achieve satisfactory performance [1]–[3]. Because
ANN search might be much faster than exact NN search, ANN
search has become an active research topic with a wide range
of applications especially for large-scale problems [1]–[3].

Among existing ANN search methods, hashing methods
have attracted much more attention due to their storage and
retrieval efficiency in real applications [4]–[23]. The goal of
hashing is to embed data points from the original space into
a Hamming space where the similarity is preserved. More
specifically, in the Hamming space, each data point will
be represented as a binary code. Based on the binary code
representation, the storage cost can be dramatically reduced,
and furthermore we can achieve constant or sub-linear search
speed which is much faster than the search speed in the
original space [12], [13], [24], [25].

Early hashing methods are mainly proposed for uni-modal
data to perform uni-modal similarity search. In recent years,
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with the explosive growing of multimedia data in real ap-
plications, multi-modal similarity search has attracted a lot
of attention. For example, given a text query, a multi-modal
similarity search system can return the nearest images or
videos in the database. To achieve an efficient performance for
large-scale problems, multi-modal hashing (MMH) has been
proposed for multi-modal search [26]–[28].

Existing MMH methods can be divided into two major
categories: multi-source hashing (MSH) [15], [29]–[31] and
cross-modal hashing (CMH) [26], [27], [32]–[34]. MSH meth-
ods aim to learn binary hash codes by utilizing information
from multiple modalities for each point. In other words, all
these multiple modalities should be observed for all data
points including the query points and those in database under
MSH settings. Because it’s usually difficult to observe all the
modalities in many real applications, the application scenarios
for MSH methods are limited. Unlike MSH methods, CMH
methods usually require only one modality for a query point
to perform search in a database with other modalities. The
application scenarios for CMH are more flexible than those
for MSH. For example, CMH can perform text-to-image or
image-to-text retrieval tasks in real applications. Hence, CMH
has gained more attention than MSH [26], [27].

A lot of CMH methods have been proposed in recent
years. Based on whether supervised information is used
or not during training procedure, existing CMH methods
can be further divided into two categories: unsupervised
CMH and supervised CMH. Unsupervised CMH methods
directly explore data features without supervised informa-
tion to learn binary codes (or hash functions). Represen-
tative unsupervised CMH methods include canonical cor-
relation analysis iterative quantization (CCA-ITQ) [6], col-
lective matrix factorization hashing (CMFH) [27], alternat-
ing co-quantization (ACQ) [35] and unsupervised generative
adversarial cross-modal hashing (UGACH) [36]. Supervised
CMH tries to learn the hash function by utilizing supervised
information. As supervised CMH methods can incorporate
semantic labels to mitigate the semantic gap, supervised CMH
methods can achieve better accuracy than unsupervised CMH
methods. Representative supervised CMH methods include
multi-modal latent binary embedding (MLBE) [37], semantic
correlation maximization (SCM) [26], semantics preserving
hashing (SePH) [38], supervised matrix factorization hash-
ing (SMFH) [39], binary set hashing (BSH) [40], deep
cross-modal hashing (DCMH) [34], cross-modal hamming
hashing (CMHH) [41], and generalized semantic preserving
hashing (GSPH) [42] .

According to the training strategy, existing CMH methods
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can be divided into two categories: relaxation-based contin-
uous methods and discrete methods. Hashing is essentially a
discrete learning problem. To avoid the difficulty caused by
discrete learning, relaxation-based continuous methods try to
solve a relaxed continuous problem with some relaxation strat-
egy. Representative continuous methods include CMFH [27],
cross view hashing (CVH) [43], SCM [26], SMFH [39] and
GSPH [42]. Discrete methods try to directly solve the discrete
problem without continuous relaxation. Representative dis-
crete methods include CCA-ITQ [6], ACQ [35], MLBE [37],
predictable dual-view hashing (PDH) [44] and SePH [38].
In general, the training of relaxation-based continuous meth-
ods is faster than discrete methods, but the accuracy of
relaxation-based continuous methods is not satisfactory. On the
contrary, the accuracy of discrete methods is typically better
than relaxation-based continuous methods, but the training of
discrete methods is time-consuming.

In this paper, we propose a novel CMH method,
called discrete latent factor model based cross-modal
hashing (DLFH), for cross modal similarity search. The con-
tributions of DLFH are outlined as follows:
• DLFH is a supervised CMH method, and in DLFH a

novel discrete latent factor model is proposed to model
the supervised information.

• DLFH is a discrete method which can directly learn the
binary hash codes without continuous relaxation.

• A novel discrete learning algorithm is proposed for
DLFH, which can be proved to be convergent. Further-
more, the implementation of DLFH is simple.

• The training (learning) of DLFH is still efficient although
DLFH is a discrete method.

• Experiments on real datasets show that DLFH can achieve
significantly better accuracy than existing methods, in-
cluding both relaxation-based continuous methods and
existing discrete methods. Experimental results also show
that the training speed of DLFH is comparable to that of
relaxation-based continuous methods, and is much faster
than that of existing discrete methods.

The rest of this paper is organized as follows. In Section II,
we briefly review the related works. In Section III, we de-
scribe the notations and problem definition. In Section IV, we
present our DLFH in detail, including model formulation and
learning algorithm. In Section V, we carry out experiments for
evaluation on three widely used datasets. At last, we conclude
the paper in Section VI.

II. RELATED WORK

In this section, we briefly review the related works of
cross-modal hashing, including continuous cross-modal hash-
ing and discrete cross-modal hashing.

A. Continuous Cross-Modal Hashing

Continuous CMH methods usually adopt relaxation strategy
for learning. More specifically, these methods adopt relaxation
strategy to learn continuous representation at the first stage,
and then utilize some rounding techniques to generate discrete
binary codes at the second stage. Representative continuous

CMH methods include CMFH [27], BSE [40], SCM [26],
SMFH [39] and GSPH [42]. CMFH is an unsupervised CMH
method which adopts collective matrix factorization to learn
cross-view hash functions. BSE, SCM, SMFH and GSPH
are supervised CMH methods. BSE tries to preserve the
inter-modal and intra-modal similarity by learning two pro-
jections and taking the geometric structures of each modality
into account. SCM learns two hash functions by integrating
semantic labels into the learning procedure. To perform effi-
cient training and fully utilize supervised information, SCM
proposes an approximation method to avoid explicit computa-
tion of the pairwise similarity matrix. SMFH is the supervised
version of CMFH which integrates supervised information into
learning procedure to further improve retrieval performance.
GSPH tries to design a generalized hashing framework to
handle a wide range of scenarios.

One shortcoming of the continuous methods is that the re-
laxation procedure might result in a sub-optimal solution [45].

B. Discrete Cross-Modal Hashing

Discrete CMH methods try to directly learn binary codes
without discarding discrete constraints. Representative discrete
CMH methods include CCA-ITQ [46], ACQ [35], MLBE [37],
PDH [44], SePH [38] and DCMH [34]. CCA-ITQ, ACQ and
PDH are unsupervised CMH methods. CCA-ITQ and ACQ
utilize the dimension reduction technologies, e.g., canoni-
cal correlation analysis (CCA) and neighborhood preserving
embedding (NPE) [47], to embed multimodal data into one
common subspace. Then, they minimize the quantization error
to learn binary codes. PDH adopts max-margin theory to
learn binary codes. By using an iterative optimization method
based on block coordinate descent, PDH tries to maintain
the predictability of the binary codes. MLBE, SePH and
DCMH are supervised CMH methods. MLBE leverages a
probabilistic latent factor model to learn binary codes which
are devised as binary latent factors and designs an alternating
learning algorithm to learn binary latent factors (i.e., binary
codes). Although MLBE is a supervised CMH method, the
complexity of MLBE is extremely high. Hence, the training
of MLBE is extremely time-consuming and it cannot scale
to large-scale datasets. SePH aims to transform semantic
affinities information between training data into a probability
distribution by minimizing the Kullback-Leibler divergence.
Furthermore, SePH utilizes a kernel logistic regression method
as an out-of-the-sample strategy to learn binary code for un-
seen data. SePH relaxes binary code as real-value continuous
codes and imposes a quantization error term to learn binary
codes. In the meantime, the time complexity of SePH is also
high. DCMH is a deep learning based cross-modal hashing
method which integrates feature learning and binary code
learning simultaneously with a deep neural networks. The time
complexity of DCMH is also high.

Typically, discrete methods can outperform continuous
methods in terms of retrieval accuracy. However, high com-
plexity makes the training of discrete supervised CMH time-
consuming. To make the training practicable, discrete super-
vised CMH methods usually sample a subset from database
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during training procedure. Hence, existing discrete supervised
CMH methods can’t fully utilize supervised information and
will deteriorate the accuracy. In summary, to fully utilize
the supervised information, we need to design a scalable
discrete CMH method to further improve retrieval accuracy
and scalability for large-scale datasets.

III. NOTATIONS AND PROBLEM DEFINITION

We briefly introduce the notations and problem definition
in this section.

A. Notations

We use bold uppercase letters like U and bold lowercase
letters like u to denote matrices and vectors, respectively. The
element at the position (i, j) of matrix U is denoted as Uij .
The ith row of matrix U is denoted as Ui∗, and the jth column
of matrix U is denoted as U∗j . ‖ · ‖F and UT denote the
Frobenius norm of a matrix and the transpose of matrix U
respectively. sign(·) is an element-wise sign function.

B. Problem Definition

Without loss of generality, we assume there exist only
two modalities in the data although our DLFH can be easily
adapted to more modalities. We use X = [x1,x2, . . . ,xn]T ∈
Rn×dx and Y = [y1,y2, . . . ,yn]T ∈ Rn×dy to denote the
feature vectors of the two modalities (modality x and modality
y), where dx and dy respectively denote the dimensionality of
the feature spaces for two modalities and n is the number of
training data. In particular, xi and yi denote the feature vectors
of the two modalities for training point i, respectively. Without
loss of generality, the data are assumed to be zero-centered
which means

∑n
i=1 xi = 0 and

∑n
i=1 yi = 0. Here, we as-

sume that both modalities are observed for all training points.
However, we do not require that both modalities are observed
for query (test) points. Hence, the setting is cross-modal.
Actually, DLFH can be easily adapted to cases where some
training points are with missing modalities, which will be left
for future study. In this paper, we focus on supervised CMH
which has shown better accuracy that unsupervised CMH [16],
[17], [26], [38], [44]. In supervised CMH, besides the feature
vectors X and Y, we are also given a cross-modal supervised
similarity matrix S ∈ {0, 1}n×n. If Sij = 1, it means that
point xi and point yj are similar. Otherwise xi and yj are
dissimilar. Here, we assume all elements of S are observed.
But our DLFH can also be adapted for cases with missing
elements in S. Sij can be manually labeled by users, or
constructed from the labels of point i and point j.

We use U,V ∈ {−1,+1}n×c to respectively denote the
binary codes for modality x and modality y, where Ui∗
and Vi∗ respectively denote the binary hash codes of two
modalities for point i and c is the length of binary code.
The goal of supervised CMH is to learn the binary codes
U and V, which try to preserve the similarity information
in S. In other words, if Sij = 1, the Hamming distance
between Ui∗ and Vj∗ should be as small as possible and vice
versa. Furthermore, we also need to learn two hash functions

hx(xq) ∈ {−1,+1}c and hy(yq) ∈ {−1,+1}c respectively
for modality x and modality y, which can compute binary
hash codes for any new query point (xq or yq) unseen in the
training set.

IV. DISCRETE LATENT FACTOR MODEL BASED
CROSS-MODAL HASHING

In this section, we introduce the details of DLFH, including
model formulation and learning algorithm.

A. Model Formulation

Given a binary code pair {Ui∗,Vj∗}, we define Θij as:
Θij = λ

cUi∗V
T
j∗, where c is the code length which is pre-

specified, and λ > 0 is a hyper-parameter denoting a scale
factor for tuning.

By using a logistic function, we define Aij as: Aij =
σ(Θij) = 1

1+e−Θij
. Based on Aij , we define the likelihood

of the cross-modal similarity S as:

p(S|U,V) =
n∏

i,j=1

p(Sij |U,V),

where p(Sij |U,V) is defined as follows:

p(Sij |U,V) =

{
Aij , if Sij = 1,

1−Aij , otherwise.

Then the log-likelihood of U and V can be derived as
follows:

L = log p(S|U,V) =
n∑

i,j=1

[
SijΘij − log(1 + eΘij )

]
The model of DLFH tries to maximize the log-likelihood of

U and V. That is, DLFH tries to solve the following problem:

max
U,V

L = log p(S|U,V) (1)

=
n∑

i,j=1

[
SijΘij − log(1 + eΘij )

]
s.t. U,V ∈ {−1,+1}n×c,

where U and V are constrained to be in a binary space, i.e.,
{−1,+1}n×c, because they are binary hash codes for learning.

We can find that maximizing the objective function in (1)
exactly matches the goal of hashing. More specifically, the
learned binary hash codes try to preserve the similarity infor-
mation in S.

Please note that in (1), DLFH adopts the maximum like-
lihood loss function. Although there exist some CMH meth-
ods [34], [41] which also use maximum likelihood loss func-
tion, none of them can utilize discrete latent factor model to
model the supervised information. On the contrary, DLFH
can directly utilize discrete latent factor model to model
the supervised information and learn the binary hash codes
without relaxation.
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B. Learning Algorithm

Problem (1) is a discrete (binary) learning problem, which
is difficult to solve. One possible solution is to relax the
discrete problem to a continuous problem by discarding the
discrete (binary) constraints. Similar relaxation strategies have
been adopted by many existing relaxation-based continuous
methods like GSPH [42], CMFH [27] and SMFH [39]. How-
ever, this relaxation may cause the solution to be sub-optimal.
Hence, the search accuracy might be unsatisfactory.

In this paper, we propose a novel method to directly
learn the binary codes without continuous relaxation. The
two parameters U and V are learned in an alternating way.
Specifically, we design an iterative learning algorithm, and in
each iteration we learn one parameter with the other parameter
fixed.

1) Learning U with V Fixed: We try to learn U with
V fixed. Even if V is fixed, it is still difficult to opti-
mize (learn) the whole U in one time. For example, if we
simply flip the signs of each element to learn U, the total
time complexity will be O(2n×c) which is very high. Here,
we adopt a column-wise learning strategy to optimize one
column (corresponds to one bit for all data points) of U each
time with other columns fixed. The time complexity to directly
learn one column is O(2n) which is still high. Here, we adopt
a surrogate strategy [48] to learn each column, which results
in a lower time complexity of O(n2). More specifically, to
optimize the kth column U∗k, we construct a lower bound of
L(U∗k) and then optimize the lower bound, which can get a
closed form solution and make learning procedure simple and
efficient. Moreover, the lower-bound based learning strategy
can guarantee the solution to converge. The following content
will introduce the details about the derivation of column-wise
learning strategy.

The gradient and Hessian of the objective function L with
respect to U∗k can be computed as follows 1:


∂L

∂U∗k
=
λ

c

n∑
j=1

(S∗j −A∗j)Vjk,

∂2L

∂U∗k∂UT
∗k

= −λ
2

c2
diag(a1, a2, · · · , an),

where A = [Aij ]
n
i,j=1, ai =

∑n
j=1Aij(1 − Aij), and

diag(a1, a2, · · · , an) denotes a diagonal matrix with the ith
diagonal element being ai.

Let U∗k(t) denote the value of U∗k at the t-th iteration,
∂L
∂U∗k

(t) denote the gradient with respect to U∗k(t), and H =

−nλ
2

4c2 I where I is an identity matrix. We define L̃(U∗k) as

1Please note that the objective function L is defined on the whole real space
although the variables U and V are constrained to be discrete. Hence, we
can still compute the gradient and Hessian for any discrete points U and V.

follows:

L̃(U∗k) =L(U∗k(t)) + [U∗k −U∗k(t)]T
∂L

∂U∗k
(t)

+
1

2
[U∗k −U∗k(t)]TH[U∗k −U∗k(t)],

=UT
∗k[

∂L

∂U∗k
(t)−HU∗k(t)]− [U∗k(t)]T

∂L

∂U∗k
(t)

+ L(U∗k(t)) +
[U∗k(t)]THU∗k(t)

2
+

UT
∗kHU∗k

2

=UT
∗k[

∂L

∂U∗k
(t)−HU∗k(t)]− [U∗k(t)]T

∂L

∂U∗k
(t)

+ L(U∗k(t)) +
[U∗k(t)]THU∗k(t)

2
− λ2n3

8c2

=UT
∗k

[ ∂L

∂U∗k
(t)−HU∗k(t)

]
+ const (2)

where const denotes the constant term L(U∗k(t)) − λ2n3

8c2 +
1
2 [U∗k(t)]THU∗k(t) − [U∗k(t)]T ∂L

∂U∗k
(t) which is indepen-

dent of the variable U∗k.

Theorem 1. L̃(U∗k) is a lower bound of L(U∗k).

To prove Theorem 1, we first introduce the following
Lemma.

Lemma 1. For a concave function f(x) with bounded cur-
vature, if the Hessian ∂2f(x)

∂x∂xT satisfies ∂2f(x)
∂x∂xT � D for some

matrix D ≺ 0, we have:

f(y) ≥ f(x) + (y − x)T
∂f(x)

∂x
+

1

2
(y − x)TD(y − x).

Here, D ≺ 0 denotes that D is a negative definite matrix,
and B � C indicates that B−C is a positive definite matrix.

The proof for Lemma 1 can be found in [48], [49].
Based on Lemma 1, we can prove Theorem 1.

Proof of Theorem 1. It’s easy to see that the L(U∗k) is a con-
cave function with bounded curvature. Furthermore, because
0 < Aij < 1, we have 0 < Aij(1 − Aij) < 1

4 . Then we can
get: ∂2L

∂U∗k∂UT
∗k
� H.

According to Lemma 1, we can get: L(U∗k) ≥ L̃(U∗k).
This means L̃(U∗k) is a lower bound of L(U∗k).

Then, we learn the column U∗k by maximizing the lower
bound L̃(U∗k):

max
U∗k

L̃(U∗k) =UT
∗k

[ ∂L

∂U∗k
(t)−HU∗k(t)

]
+ const,

s.t. U∗k ∈ {−1,+1}n. (3)

∀l, Ulk is defined over {−1,+1}. Hence, to maximize
L̃(U∗k), we only need to take Ulk = 1 whenever the l-th
element of

[
∂L
∂U∗k

(t) − HU∗k(t)
]

is greater than 0, and
Ulk = −1 otherwise. That is to say, the optimal solution for
Problem (3) is: U∗k = sign[ ∂L

∂U∗k
(t)−HU∗k(t)]. And we use

this solution to get U∗k(t+ 1):

U∗k(t+ 1) = sign[
∂L

∂U∗k
(t)−HU∗k(t)]. (4)
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Algorithm 1 Learning algorithm for DLFH
Input: S ∈ {1, 0}n×n: supervised similarity matrix,

c: code length.
Output: U and V: binary codes for two modalities.
1: Procedure: initialize U and V.
2: for t = 1→ T do
3: for k = 1→ c do
4: Update U∗k according to (4).
5: end for
6: for k = 1→ c do
7: Update V∗k according to (5).
8: end for
9: end for

2) Learning V with U Fixed: When U is fixed, we adopt
a similar strategy as that for U to learn V. Specifically, we
can get the following closed form solution to update V∗k:

V∗k(t+ 1) = sign[
∂L

∂V∗k
(t)−HV∗k(t)], (5)

where ∂L
∂V∗k

= λ
c

∑n
i=1(STi∗ −AT

i∗)Uik and H = −nλ
2

4c2 I.
The learning algorithm for DLFH is summarized in Algo-

rithm 1, which can be easily implemented.
Please note that LFH [50] has adopted latent factor model

for hashing. However, DLFH is different from LFH and is
novel due to the following reasons. Firstly, DLFH is for
cross-modal supervised hashing but LFH is for uni-modal su-
pervised hashing. Secondly, DLFH is a discrete method which
directly learns discrete (binary) codes without relaxation, but
LFH is a relaxation-based continuous method which cannot
directly learn the discrete codes. Last but not least, LFH learns
all bits of a point each time, but DLFH learns one bit of all
points each time which can lead to highly uncorrelated hash
codes.

Theorem 2. The learning algorithm for DLFH which is shown
in Algorithm 1 is convergent.

Proof of Theorem 2. According to Theorem 1, we have:

L(U∗k) ≥ L̃(U∗k). (6)

Furthermore, since we use the optimal solution of Prob-
lem (3) to get U∗k(t+ 1), we have:

L̃(U∗k(t+ 1)) ≥ L̃(U∗k(t)). (7)

We can also find that L̃(U∗k(t)) = L(U∗k(t)). Then, we
have:

L(U∗k(t+ 1)) ≥ L̃(U∗k(t+ 1)) ≥ L̃(U∗k(t)) = L(U∗k(t)).

Hence, during the learning procedure, we can always guar-
antee that L(U∗k(t+1)) ≥ L(U∗k(t)). Similarly, we can also
guarantee that L(V∗k(t + 1)) ≥ L(V∗k(t)). This means that
we can always guarantee that the objective function will not
decrease during the whole learning procedure in Algorithm 1.

Together with the fact that L(U,V) is upper-bounded by
0, we can guarantee that Algorithm 1 will converge. Because

L(U,V) is non-concave2 in both U and V, the learned
solution will converge to a local optimum.

3) Stochastic Learning Strategy: We can find that the
computational cost for learning U∗k and V∗k is O(n2). DLFH
will become intractable when the size of training set is large.
Here, we design a stochastic learning strategy to avoid high
computational cost.

It is easy to see that the high computational cost mainly
comes from the gradient computation for both U∗k and V∗k.
In our stochastic learning strategy, we randomly sample m
columns (rows) of S to compute ∂L

∂U∗k
( ∂L
∂V∗k

) during each
iteration. Then, we get the following formulas for updating
U∗k and V∗k:

U∗k(t+ 1) = sign
[λ
c

m∑
q=1

(S∗jq −A∗jq )Vjqk(t) +
mλ2

4c2
U∗k(t)

]
,

(8)

V∗k(t+ 1) = sign
[λ
c

m∑
q=1

(ST
iq∗ −AT

iq∗)Uiqk(t) +
mλ2

4c2
V∗k(t)

]
,

(9)

where {jq}mq=1 and {iq}mq=1 are the m sampled column and
row indices, respectively.

To get the stochastic learning algorithm for DLFH, we only
need to substitute (4) and (5) in Algorithm 1 by (8) and (9),
respectively. Then the computational cost will decrease from
O(n2) to O(nm), where m� n.

C. Out-of-Sample Extension
For any unseen query points xq /∈ X or yq /∈ Y, we need to

perform out-of-sample extension to generate the binary codes.
Many existing hashing methods learn classifiers to predict
binary codes for out-of-sample extension. These classifiers
include SVM [24], boosted decision tree [8], kernel logistic
regression [38], and so on. In this paper, we adopt two
classifiers for out-of-sample extension, one being linear and
the other being non-linear. We use the modality x as an
example to demonstrate these two strategies.

For linear classifier, we minimize the following square loss:

Lsquare(W
(x)) = ‖U−XW(x)‖2F + γx‖W(x)‖2F ,

where γx is the hyper-parameter for regularization term. We
can get: W(x) = (XTX + γxI)

−1XTU.
Then we can get the hash function for out-of-sample exten-

sion: hx(xq) = sign([W(x)]Txq).
For non-linear classifier, we adopt kernel logistic regres-

sion (KLR) as that in SePH [38]. Specifically, we learn c
classifiers, one classifier for a bit, to predict binary codes for
xq . For the kth bit, we minimize the following KLR loss:

LKLR(M
(x)
∗k ) =

n∑
i=1

log(1 + e−Uikφ(xi)
TM

(x)
∗k ) + ηx‖M(x)

∗k ‖
2
F ,

where ηx is the hyper-parameter for regularization term and
φ(xi) a RBF kernel feature representation for xi. Then we
can get the hash function for out-of-sample extension:

hx(xq) = sign([M(x)]Tφ(xi)),

2Please note that L(·) is concave in U∗k or V∗k , but non-concave in both
U and V.



1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2019.2897944, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, XXX 2019 6

TABLE I
EXAMPLE POINTS FROM THREE DATASETS.

Dataset IAPR-TC12 MIRFLICKR-25K NUS-WIDE

Image example

Text information
cascading, waterfall, middle,

jungle, pool, dirty, water,
foreground.

explore, beach, people, sea,
summer, boat, jump, playa, mar,

coast, gente, shore.

sunset, night, architecture, city, building, lake, lights,
colorful, buildings, tower, america, evening,

downtown, work, chicago, office, great, cityscape,
streets, illinois, business.

Label sky-light, trees, waterfall, water,
vegetation.

male, people, sea, sky, sunset,
transport, water. sky, buildings, lake.

where M
(x)
∗k is the kth column of M(x).

We can use similar ways to learn the out-of-sample classi-
fiers for the y modality. We can also use other out-of-sample
classifiers in our method, but this is not the focus of this paper.
In the following content, we use “DLFH” and “KDLFH” to
denote the linear and non-linear versions for out-of-sample
extension, respectively.

D. Complexity Analysis

We call the DLFH version without stochastic learning
strategy DLFH-Full, and call the stochastic version of DLFH
DLFH-Stochastic. The time complexity of DLFH-Full is
O(Tcn2), where T and c are typically small constants. The
time complexity of DLFH-Stochastic is O(Tcnm), which is
much lower than that of the DLFH-Full when m � n. In
practice, we suggest to adopt the DLFH-Stochastic because in
our experiment we find that the accuracy of DLFH-Stochastic
is comparable to that of the DLFH-Full even if m is set to
be c which is typically a small constant. When m = c, the
training of DLFH-Stochastic is very efficient.

V. EXPERIMENTS

We utilize three widely used datasets for evaluation. Our
DLFH and KDLFH are non-deep methods. The experiments
for non-deep baselines are performed on a workstation with
Intel (R) CPU E5-2620V2@2.1G of 12 cores and 96G RAM.
For this platform, the operating system is CentOS 6.5. For deep
CMH baselines, we conduct our experiments on a workstation
with Intel (R) CPU E5-2860V4@2.4G of 14 cores, 768G
RAM and a NVIDIA M40 GPU3. For this platform, the
operating system is Ubuntu 14.04.

A. Datasets

Three datasets, IAPR-TC12 [51], MIRFLICKR-25K [52]
and NUS-WIDE [53], are used for evaluation.

The IAPR-TC12 dataset consists of 20,000 image-text pairs
which are annotated using 255 labels. We use the entire dataset

3When we compare our DLFH and KDLFH with deep CMH baselines in
terms of time cost, DLFH and KDLFH are also performed on the same GPU
platform.

for our experiment. Each text is represented as a 2912-D
bag-of-words (BOW) vector. Each image is represented by
a 512-D GIST feature vector.

The MIRFLICKR-25K dataset contains 25,000 data points.
Each point corresponds to an image associated with some
textual tags. We only select those points which have at least
20 textual tags for our experiment. Each text is represented as
a 1386-D BOW vector. Each image is represented by a 512-D
GIST feature vector. Each point is manually annotated with
some of the 24 unique labels.

The NUS-WIDE dataset contains 260,648 data points, each
of which corresponds to an image associated with some
textual tags. Furthermore, each point is annotated with one or
multiple labels from 81 concept labels. We only select 186,577
points that belong to the 10 most frequent concepts from the
original dataset. The text for each point is represented as a
1000-D BOW vector. Furthermore, each image is a 500-D
bag-of-visual words (BOVW) vector.

For all three datasets, the ground-truth neighbors (similar
pairs) are defined as those image-text pairs which share at least
one common label. Table I illustrates some example points
from three datasets.

B. Baselines and Evaluation Protocol

We adopt nine state-of-the-art CMH methods as base-
lines for comparison. They are CMHH [41], UGACH [36],
DCMH [34], GSPH [42], SePH [38], SCM [26], CMFH [27],
CCA-ITQ [6] and MLBE [37]. Among these baselines,
UGACH, CCA-ITQ and CMFH are unsupervised, and others
are supervised. CMFH, SCM and GSPH are relaxation-based
continuous methods, others are discrete methods. CMHH,
UGACH and DCMH are deep learning based methods, oth-
ers are non-deep methods. For DCMH, GSPH, SePH, SCM
and MLBE, the source codes are kindly provided by their
corresponding authors. For the other baselines, we implement
them carefully by ourselves. GSPH and SePH are kernel-based
methods. Following their authors’ suggestion, we utilize RBF
kernel and adopt two strategies to create kernel bases to learn
hash functions for SePH. Specifically, one strategy is randomly
taking 500 data points as kernel bases and the other strategy
is to use k-means algorithm to learn 500 centers as kernel
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TABLE II
DETAILED STATISTICS OF THREE DATASETS.

Dataset #Total #Query #Database Image feature Text feature
IAPR-TC12 20,000 2,000 18,000 512-D GIST 2912-D BOW
MIRFLICKR-25K 20,015 2,000 18,015 512-D GIST 1386-D BOW
NUS-WIDE 186,577 1,867 184,710 500-D BOVW 1000-D BOW
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Fig. 1. Objective function value and MAP of DLFH on subset of MIRFLICKR-25K.

bases. These two versions of SePH are denoted as SePHrnd
and SePHkm. For GSPH, we use k-means algorithm to learn
500 centers as kernel bases. For the other baselines, we set
the parameters by following suggestions of the corresponding
authors. For our DLFH, we set λ = 8 and T = 30 which
is selected based on a validation set. We adopt the stochastic
version of DLFH unless otherwise stated. In stochastic DLFH,
m = c. To initialize U and V, we first use a uniform distri-
bution to randomly generate the elements in the matrices, and
then use sign(·) function to map them to {±1}. We find that
our DLFH is not sensitive to initialization. For KDLFH, we
randomly take 500 data points as kernel bases like SePHrnd.
All experiments are run 5 times to remove randomness, then
the average accuracy with standard deviations is reported.

For IAPR-TC12 and MIRFLICKR-25K datasets, we ran-
domly select 2,000 data points as query (test) set and the rest as
retrieval (database) set. For NUS-WIDE dataset, we randomly
select 1,867 data points as a query set and the rest as retrieval
set. For our DLFH and most baselines except GSPH, SePH and
MLBE, we use the whole retrieval set as training set. Because
GSPH, SePH and MLBE can not scale to large training set,
we randomly sample 5,000 data points from retrieval set to
construct training set for GSPH and SePH, and sample 1,000
data points for training MLBE due to an out-of-memory error
with larger training set. Table II presents the detailed statistics
of three datasets.

As existing methods [6], Hamming ranking and hash lookup
are adopted as retrieval protocols for evaluation. We report
Mean Average Precision (MAP) and Top-k precision for the
Hamming ranking protocol. The precision-recall curve is the
widely used metric to measure the accuracy of the hash lookup
protocol and we report the precision-recall for evaluation.

C. Convergence Analysis

To verify the convergence property of DLFH, we conduct
an experiment on a subset of MIRFLICKR-25K dataset.
Specifically, we randomly select 5,000 data points from
MIRFLICKR-25K dataset, with 3,000 data points for training
and the rest for test (query).

Figure 1 shows the convergence of objective function
value (Figure 1 (a) and (c)) and MAP (Figure 1 (b) and (d)),
where “DLFH-Full” denotes the full version of DLFH and
“DLFH-Stochastic” denotes the stochastic version of DLFH.
In the figure, “I → T ” denotes image-to-text retrieval where
we use image modality as queries and then retrieve text
from database, and other notations are defined similarly. We
can find that the objective function value of DLFH-Full will
not decrease as iteration number increases, which verifies
the claim about the convergence in Theorem 2. There is
some vibration in DLFH-Stochastic due to the stochastic
sampling procedure, but the overall trend is convergent. For
MAP, we can observe the convergence for overall trend. Both
DLFH-Full and DLFH-Stochastic converge very fast, and only
a small number of iterations are needed.

Another interesting phenomenon is that the accuracy of
DLFH-Stochastic is almost the same as that of DLFH-Full.
Hence, unless otherwise stated, the DLFH in the following
experiment refers to the stochastic version of DLFH.

D. Hamming Ranking Task

Table III, Table IV and Table V presents the MAP and
Top100 precision on IAPR-TC12, MIRFLICKR-25K and
NUS-WIDE datasets, respectively. The best accuracy is shown
in boldface. Because DLFH and KDLFH are non-deep meth-
ods, here we only compare them with non-deep baselines,
including GSPH, SePH, SCM, CMFH, CCA-ITQ and MLBE.
The detailed comparison with deep learning-based baselines
will be separately shown in Section V-G.

By comparing GSPH, SePHrnd, SePHkm, SCM to CMFH
and CCA-ITQ, we can see that supervised methods can out-
perform unsupervised methods in most cases. By comparing
KDLFH, DLFH, SePHrnd and SePHkm to other methods,
we can find that in general discrete methods can outper-
form relaxation-based continuous methods. Please note that
MLBE is a special case because the training of MLBE is too
slow and we have to sample only a very small subset for
training. Hence, its accuracy is low although it is supervised
and discrete. We can find that our DLFH can significantly
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TABLE III
MAP (mean± std, IN PERCENT) AND TOP100 PRECISION (mean± std, IN PERCENT) ON IAPR-TC12 DATASET WITH 8, 16, 32 AND 64 BITS.

Task Method MAP Top100 precision
8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

DLFH 43.07±1.85 45.58±1.33 52.00±0.75 54.84±0.57 54.62±1.98 57.94±1.93 66.60±0.74 70.05±0.96
SCM 37.67±0.00 38.74±0.00 39.72±0.00 41.02±0.00 45.85±0.00 49.40±0.00 50.94±0.00 52.73±0.00
CMFH 30.92±0.81 30.91±0.62 31.70±1.16 30.76±0.53 31.57±1.10 31.27±0.61 32.51±2.04 31.31±0.94
CCA-ITQ 35.35±0.00 34.17±0.00 33.09±0.00 32.36±0.00 44.03±0.00 42.31±0.00 39.51±0.00 37.50±0.00

I → T
MLBE 30.39±0.01 30.52±0.16 30.36±0.04 30.46±0.09 31.16±0.00 30.79±0.52 30.30±0.72 30.50±0.24
KDLFH 43.26±1.42 47.02±1.11 52.61±0.65 56.54±1.00 54.57±1.66 60.51±2.11 67.04±1.52 71.04±1.21
SePHrnd 40.30±0.07 41.47±0.22 42.27±0.11 42.89±0.10 45.95±0.39 48.20±0.41 49.97±0.24 51.52±0.30
SePHkm 40.30±0.08 41.41±0.26 42.07±0.12 42.65±0.10 46.22±0.14 48.22±0.60 49.99±0.36 51.27±0.24
GSPH 38.67±0.41 40.03±0.22 41.67±0.16 42.85±0.21 45.43±0.44 48.79±0.23 51.27±0.40 53.42±0.23
DLFH 43.84±1.96 48.47±1.30 57.13±0.60 62.43±0.41 55.08±1.24 62.22±1.56 71.76±0.77 77.65±0.62
SCM 37.65±0.00 38.57±0.00 39.81±0.00 40.82±0.00 44.39±0.00 47.81±0.00 51.08±0.00 53.08±0.00
CMFH 31.02±1.17 31.67±0.94 32.42±1.15 31.71±0.36 32.33±2.19 33.24±1.27 33.67±2.56 32.79±0.94
CCA-ITQ 35.27±0.00 34.19±0.00 33.18±0.00 32.44±0.00 44.85±0.00 42.85±0.00 40.63±0.00 38.59±0.00

T → I
MLBE 30.39±0.00 30.44±0.09 30.35±0.11 30.49±0.12 31.16±0.00 30.30±0.93 30.09±1.08 30.55±0.15
KDLFH 44.40±1.39 50.73±1.00 58.10±0.59 63.93±1.34 55.85±3.62 65.76±1.14 73.50±1.52 79.21±1.12
SePHrnd 42.70±0.12 44.31±0.18 45.62±0.14 46.66±0.21 53.20±0.26 57.04±0.41 60.60±0.22 63.38±0.70
SePHkm 42.19±0.08 43.77±0.28 44.76±0.14 45.67±0.29 51.92±0.30 55.48±0.92 58.49±0.48 60.72±0.56
GSPH 40.01±0.61 42.30±0.28 44.77±0.26 46.62±0.27 49.14±1.09 55.91±0.25 60.72±0.63 64.40±0.41

TABLE IV
MAP (mean± std, IN PERCENT) AND TOP100 PRECISION (mean± std, IN PERCENT) ON MIRFLICKR-25K DATASET WITH 8, 16, 32 AND 64 BITS.

Task Method MAP Top100 precision
8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

DLFH 72.68±1.11 75.84±0.46 78.02±0.07 78.92±0.03 78.25±2.26 82.94±0.93 85.37±0.90 86.13±0.46
SCM 62.88±0.00 63.89±0.00 65.06±0.00 65.76±0.00 67.41±0.00 69.59±0.00 70.12±0.00 71.01±0.00
CMFH 56.98±1.02 57.38±0.59 57.32±0.22 56.87±0.22 58.72±1.44 59.76±0.91 60.35±0.60 59.43±0.74
CCA-ITQ 58.33±0.00 57.62±0.00 57.11±0.00 56.77±0.00 62.26±0.00 60.80±0.00 59.67±0.00 58.72±0.00

I → T
MLBE 55.75±0.05 55.81±0.14 55.83±0.15 55.83±0.15 57.34±0.71 56.20±0.85 55.79±2.45 58.04±2.22
KDLFH 74.28±0.67 77.07±0.79 79.27±0.24 80.08±0.19 79.02±0.24 83.75±1.81 85.99±0.57 86.92±0.45
SePHrnd 65.16±0.16 65.60±0.17 65.96±0.09 66.23±0.08 67.05±0.41 67.64±0.13 68.70±0.36 69.40±0.39
SePHkm 65.51±0.21 66.06±0.16 66.40±0.22 66.66±0.10 67.81±0.57 68.38±0.45 68.99±0.53 69.87±0.19
GSPH 63.12±0.65 64.62±0.35 65.77±0.32 66.40±0.31 67.81±0.47 69.44±0.32 70.29±0.25 70.59±0.40
DLFH 77.73±0.88 82.39±0.29 85.01±0.17 86.05±0.21 82.85±2.03 87.95±0.69 90.50±0.31 91.28±0.19
SCM 61.62±0.00 62.37±0.00 63.37±0.00 64.25±0.00 65.08±0.00 67.97±0.00 69.53±0.00 71.38±0.00
CMFH 57.07±0.72 57.52±0.46 57.71±0.20 57.69±0.07 57.09±1.74 57.49±0.57 60.20±0.24 60.18±0.27
CCA-ITQ 58.22±0.00 57.59±0.00 57.12±0.00 56.82±0.00 62.65±0.00 60.85±0.00 59.93±0.00 59.03±0.00

T → I
MLBE 55.73±0.08 55.79±0.12 55.79±0.10 56.04±0.22 57.01±1.25 55.54±0.87 55.57±0.70 56.05±0.59
KDLFH 79.08±1.40 82.14±0.57 85.02±0.08 85.83±0.24 85.15±1.91 88.63±1.05 91.37±0.49 92.46±0.33
SePHrnd 68.11±0.22 68.66±0.27 69.42±0.28 69.79±0.42 73.98±0.55 75.47±0.37 77.00±0.33 78.15±0.34
SePHkm 69.15±0.24 69.72±0.30 70.39±0.36 70.83±0.20 75.98±0.40 76.65±0.84 78.28±0.71 79.62±0.43
GSPH 66.50±0.50 68.47±0.40 69.93±0.37 71.21±0.30 76.73±0.48 79.12±0.38 80.18±0.27 81.53±0.40

TABLE V
MAP (mean± std, IN PERCENT) AND TOP100 PRECISION (mean± std, IN PERCENT) ON NUS-WIDE DATASET WITH 8, 16, 32 AND 64 BITS.

Task Method MAP Top100 precision
8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

DLFH 63.82±0.61 67.00±0.45 69.27±0.21 70.33±0.25 74.61±1.13 78.91±0.88 82.07±0.80 84.03±0.82
SCM 51.29±0.00 52.19±0.00 54.81±0.00 55.58±0.00 53.38±0.00 57.02±0.00 60.90±0.00 61.96±0.00
CMFH 36.31±1.53 38.12±1.08 38.62±1.36 40.03±0.81 38.23±1.36 41.23±1.13 43.08±1.42 44.03±0.92
CCA-ITQ 40.97±0.00 39.55±0.00 38.23±0.00 37.03±0.00 52.24±0.00 51.89±0.00 50.05±0.00 46.44±0.00

I → T
MLBE 34.56±0.00 34.51±0.00 34.46±0.00 34.86±0.08 35.07±0.00 33.84±0.00 33.84±0.00 40.77±3.65
KDLFH 65.24±1.03 68.47±0.65 70.19±0.15 71.12±0.29 76.84±1.18 79.91±0.67 82.49±0.63 84.31±0.45
SePHrnd 52.67±0.47 53.96±0.87 54.85±0.25 55.24±0.42 55.00±0.30 55.89±0.31 56.52±0.24 56.81±0.24
SePHkm 53.36±0.50 54.41±0.57 55.54±0.41 55.64±0.41 55.51±0.21 56.32±0.41 56.56±0.38 57.09±0.35
GSPH 51.28±0.75 54.19±0.40 55.29±0.25 56.02±0.22 55.15±0.21 56.66±0.74 57.89±0.19 58.27±0.16
DLFH 72.22±2.28 78.50±0.50 82.03±0.42 83.78±0.09 80.01±2.92 86.37±1.75 90.12±0.67 90.89±0.52
SCM 48.26±0.00 49.25±0.00 51.53±0.00 52.26±0.00 53.45±0.00 57.05±0.00 61.59±0.00 62.92±0.00
CMFH 35.67±1.56 36.87±1.09 37.48±1.44 38.24±0.90 36.22±2.85 40.72±0.76 44.57±2.92 46.91±1.92
CCA-ITQ 40.32±0.00 38.98±0.00 37.81±0.00 36.79±0.00 51.68±0.00 52.67±0.00 50.62±0.00 46.81±0.00

T → I
MLBE 34.53±0.00 34.53±0.00 34.53±0.00 34.53±0.08 33.93±0.00 33.93±0.00 33.93±0.00 35.52±1.24
KDLFH 72.37±2.19 78.27±0.95 81.78±0.51 83.25±0.28 82.77±1.90 88.59±0.81 91.03±1.03 92.57±0.47
SePHrnd 60.71±0.47 61.79±1.17 62.75±0.29 63.40±0.50 68.85±0.41 69.79±0.92 70.36±0.81 71.44±0.53
SePHkm 61.34±0.38 62.63±0.78 64.14±0.14 64.47±0.53 69.50±0.61 70.37±0.27 71.48±0.20 72.30±0.45
GSPH 58.60±0.86 62.69±0.47 63.95±0.39 65.13±0.34 68.83±0.71 71.58±0.90 72.91±0.27 73.81±0.42

outperform all baselines in all cases for both image-to-text
and text-to-image retrieval tasks. Furthermore, KDLFH can

further improve retrieval accuracy thanks to the non-linear
out-of-sample extension strategy.
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Fig. 2. Precision-recall curve on IAPR-TC12 dataset.
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Fig. 3. Precision-recall curve on MIRFLICKR-25K dataset.

E. Hash Lookup Task

In real applications, retrieval with hash lookup can usually
achieve constant or sub-linear search speed. For hash lookup
protocols, we report precision-recall curves to evaluate the
proposed DLFH, KDLFH and baselines on three datasets.

Figure 2, Figure 3 and Figure 4 show the precision-recall
curve on IAPR-TC12, MIRFLICKR-25K and NUS-WIDE
datasets, respectively. Once again, we can find that DLFH and
KDLFH can significantly outperform all baselines in all cases.

F. Training Speed

To evaluate the training speed of DLFH, we adopt different
number of data points from retrieval set to construct training
set and then report the training time. Table VI presents
the training time (in second) for our DLFH and baselines,
where “–” denotes that we cannot carry out corresponding
experiments due to out-of-memory errors. We can find that the
unsupervised method CCA-ITQ is the fastest method because
it does not use supervised information for training. Although
the training of CCA-ITQ is fast, the accuracy of it is low.
Hence, CCA-ITQ is not practical in real applications. By com-
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Fig. 4. Precision-recall curve on NUS-WIDE dataset.

TABLE VI
TRAINING TIME (IN SECOND) ON SUBSETS OF NUS-WIDE.

Method 1K 5K 10K 50K ∼184K
DLFH 1.26 3.84 6.61 34.88 112.88
SCM 10.41 11.13 11.09 11.34 12.30
CMFH 4.20 12.01 20.65 84.00 305.51
CCA-ITQ 0.56 0.59 0.69 1.51 4.25
MLBE 998.98 – – – –
KDLFH 56.58 214.65 479.46 2097.52 7341.05
SePHrnd 80.54 606.18 – – –
SePHkm 83.81 705.39 – – –
GSPH 126.43 981.35 – – –

paring MLBE, SePHrnd and SePHkm to SCM and CMFH, we
can find that existing discrete methods are much slower than
relaxation-based continuous methods. Although our DLFH is
a discrete method, its training speed can be comparable to
relaxation-based continuous methods. Furthermore, KDLFH
is also much faster than the kernel baselines SePHrnd and
SePHkm.

Although KDLFH can achieve better accuracy than DLFH,
the training speed of KDLFH is much slower than that of
DLFH. Hence, in real applications, we provide users with two
choices between DLFH and KDLFH based on whether they
care more about training speed or accuracy.

Overall, our DLFH and KDLFH methods achieve the best
accuracy with a relatively fast training speed. In particular, our
methods can significantly outperform relaxation-based contin-
uous methods in terms of accuracy, but with a comparable
training speed. Furthermore, our methods can significantly
outperform existing discrete methods in terms of both accuracy
and training speed.

G. Comparison with Deep Baselines

There have appeared some deep learning based cross-modal
hashing methods [16], [34], [36], [41]. We compare DLFH

TABLE VII
COMPARISON WITH DEEP BASELINES ON IAPR-TC12 DATASET.

Method MAP (%) Avg. Time
I → T T → I

CMHH 48.81±0.46 49.46±0.24 49.14±0.11 45468.5
DCMH 45.26±0.33 51.85±0.38 48.56±0.35 33090.2
DLFH 43.77±1.27 52.67±1.52 48.22±1.33 5.85
KDLFH 50.48±0.83 49.91±1.09 50.20±0.97 741.75

TABLE VIII
COMPARISON WITH DEEP BASELINES ON MIRFLICKR-25K DATASET.

Method MAP (%) Avg. Time
I → T T → I

CMHH 75.37±0.13 76.84±0.22 76.10±0.32 44358.6
DCMH 74.41±0.12 78.48±0.53 76.44±0.22 33736.7
DLFH 77.94±0.98 79.00±0.68 78.47±0.79 4.46
KDLFH 85.91±0.72 82.03±1.28 83.97±0.99 777.59

and KDLFH with some representative deep CMH methods,
including CMHH, DCMH and UGACH. Please note that the
main focus of this paper is on supervised hashing and UGACH
is an unsupervised method. Hence, we only compare DLFH
and KDLFH with UGACH on the largest dataset NUS-WIDE
in terms of accuracy for demonstration. For fair comparison,
we use 4096-D deep features extracted by using a pre-trained
CNN model for the image modality in DLFH and KDLFH.
This pre-trained CNN model is also used for initializing
DCMH and CMHH. Hence, the comparison is fair. Because
deep CMH methods are time-consuming, we use a subset of
the whole dataset as training set by following the same strategy
in [34].

The MAP and training time (in second) with 16 bits
are shown in Table VII, Table VIII and Table IX on
IAPR-TC12, MIRFLICKR-25K and NUS-WIDE datasets, re-
spectively. Other cases with different number of bits have
similar phenomenon. We use boldface to denote the cases
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TABLE IX
COMPARISON WITH DEEP BASELINES ON NUS-WIDE DATASET.

Method MAP (%) Avg. Time
I → T T → I

UGACH 61.3 60.3 60.8 N/A
CMHH 66.82±1.02 67.35±0.84 67.08±0.91 48128.5
DCMH 64.79±0.19 68.84±0.28 66.62±0.18 35777.2
DLFH 80.67±0.77 75.76±1.68 78.22±1.44 36.01
KDLFH 82.32±1.23 76.04±1.99 79.18±1.78 6651.90

where the average accuracy is better than that of baselines. We
can see that KDLFH and DLFH can outperform deep CMH
methods in most cases. Furthermore, KDLFH and DLFH are
more efficient than deep CMH methods in all cases, even if
KDLFH and DLFH are trained on CPU while deep CMH
methods are trained on GPU.

H. Comparison with LFH-extension

To verify the effectiveness of the proposed method, we
extend LFH method to cross-modal hashing and adopt this
method as baseline. Specifically, we utilize LFH method to
learn a unified binary codes for both two modalities. Then we
learn two linear functions to perform out-of-sample extension.
We denote this method as LFHcm.

We present the MAP results in Figure 5 on NUS-WIDE
dataset. We can see that DLFH can outperform LFHcm
thanks to discrete learning and bit-wise learning strategy.
To verify that DLFH can learn a higher uncorrelated binary
codes because of a bit-wise learning strategy, we analysis the
correlation matrix E of the learned binary codes for DLFH and
LFH. We also calculate the mean Absolute Correlation (mAC)
based on the following equation: mAC =

2
∑c

i=1

∑
j<i |Eij |

c(c−1) ,
where E = {Eij}ci,j=1 ∈ Rc×c is the correlation matrix.

We show the correlation matrix (absolute value) of learned
binary codes U and V for DLFH in Figure 6 (a),(b). And
the correlation matrix for LFHcm is shown in Figure 6 (c).
Furthermore, we can find that DLFH can achieve lower mAC
than LFHcm. Hence, DLFH can learn more highly uncorre-
lated binary codes than LFHcm.
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Fig. 5. Comparison with LFHcm on NUS-WIDE dataset.

I. Sensitivity to Hyper-Parameter

We study the influence of γx, ηx, λ and the number of
sampled points m on IAPR-TC12, MIRFLICKR-25K and
NUS-WIDE datasets.

We present the MAP values with different γx from the range
of [10−4, 103] with the code length being 16 bits. The results
are shown in Figure 7. We can find that DLFH is not sensitive
to γx in a large range when 10−4 ≤ ηx ≤ 1. Furthermore,
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Fig. 6. Correlation matrix and mAC on NUS-WIDE dataset.

from Figure 8, we can find that DLFH is not sensitive to ηx
in a large range when 10−3 ≤ ηx ≤ 1.

We also report the MAP values for different λ from the
range of [1, 24] with the code length being 16 bits. The results
are shown in Figure 9. We can find that DLFH is not sensitive
to λ in a large range when 4 ≤ λ ≤ 16.

Furthermore, we present the influence of m in Figure 10. We
can find that as the number of sampled points increases, the ac-
curacy increases at the beginning and then remains unchanged.
As more sampled points will require higher computation cost,
we simply set m = c in our experiment to get a good tradeoff
between accuracy and efficiency for DLFH and KDLFH.
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Fig. 7. MAP values with different γx on three datasets.
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Fig. 8. MAP values with different ηx on three datasets.
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Fig. 9. MAP values with different λ on three datasets.

VI. CONCLUSION

In this paper, we propose a novel cross-modal hashing
method, called discrete latent factor model based cross-
modal hashing (DLFH), for cross-modal similarity search in
large-scale datasets. DLFH is a discrete method which can
directly learn the binary hash codes, and at the same time
it is efficient. Experiments show that DLFH can significantly
outperform relaxation-based continuous methods in terms of
accuracy, but with a comparable training speed. Furthermore,
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Fig. 10. MAP values with different number of sampled points m on three
datasets.

DLFH can significantly outperform existing discrete methods
in terms of both accuracy and training speed.
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M. Montes-y-Gómez, E. F. Morales, L. E. Sucar, L. V. Pineda, and
M. Grubinger, “The segmented and annotated IAPR TC-12 benchmark,”
CVIU, vol. 114, no. 4, pp. 419–428, 2010.

[52] M. J. Huiskes and M. S. Lew, “The MIR flickr retrieval evaluation,” in
ACM SIGMM, 2008, pp. 39–43.

[53] T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “NUS-WIDE:
a real-world web image database from national university of singapore,”
in CIVR, 2009.



1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2019.2897944, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, XXX 2019 13

Qing-Yuan Jiang received the BSc degree in com-
puter science from Nanjing University, China, in
2014. He is currently working toward the PhD
degree in the Department of Computer Science and
Technology, Nanjing University. His research inter-
ests are in machine learning and learning to hash.

Wu-Jun Li received the BSc and MEng degrees in
computer science from Nanjing University of China,
and the PhD degree in computer science from the
Hong Kong University of Science and Technology.
He started his academic career as an assistant pro-
fessor in the Department of Computer Science and
Engineering, Shanghai Jiao Tong University. He then
joined Nanjing University where he is currently an
associate professor in the Department of Computer
Science and Technology. His research interests are in
machine learning, big data, and artificial intelligence.

He is a member of the IEEE.


